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Abstract

The existing research on value-based reinforcement learning also minimizes the1

error. However, is error minimization really the only option for value-based2

reinforcement learning? We can easily observe that the policy on action choosing3

probabilities is often related to the relative values, and has nothing to do with4

their absolute values. Based on this observation, we propose the objective of5

variance minimization instead of error minimization, derive many new variance6

minimization algorithms, both including a traditional parameter ω, and conduct an7

analysis of the convergence rate and experiments. The experimental results show8

that our proposed variance minimization algorithms converge much faster.9

1 Introduction10

Reinforcement learning can be mainly divided into two categories: value-based reinforcement11

learning and policy gradient-based reinforcement learning. This paper focuses on temporal difference12

learning based on linear approximated valued functions. Its research is usually divided into two steps:13

the first step is to establish the convergence of the algorithm, and the second step is to accelerate the14

algorithm.15

In terms of stability, Sutton [1988] established the convergence of on-policy TD(0), and Tsitsiklis16

and Van Roy [1997] established the convergence of on-policy TD(λ). However, “The deadly triad”17

consisting of off-policy learning, bootstrapping, and function approximation makes the stability a18

difficult problem [Sutton and Barto, 2018]. To solve this problem, convergent off-policy temporal19

difference learning algorithms are proposed, e.g., BR Baird and others [1995], GTD Sutton et al.20

[2008], GTD2 and TDC Sutton et al. [2009], ETD Sutton et al. [2016], and MRetrace Chen et al.21

[2023].22

In terms of acceleration, Hackman [2012] proposed Hybrid TD algorithm with on-policy matrix. Liu23

et al. [2015, 2016, 2018] proposed true stochastic algorithms, i.e., GTD-MP and GTD2-MP, from a24

convex-concave saddle-point formulation. Second-order methods are used to accelerate TD learning,25

e.g., Quasi Newton TD Givchi and Palhang [2015] and accelerated TD (ATD) [Pan et al., 2017].26

Hallak et al. [2016] introduced an new parameter to reduce variance for ETD. Zhang and Whiteson27

[2022] proposed truncated ETD with a lower variance. Variance Reduced TD with direct variance28

reduction technique [Johnson and Zhang, 2013] is proposed by Korda and La [2015] and analysed by29

Xu et al. [2019]. How to further improve the convergence rates of reinforcement learning algorithms30

is currently still an open problem.31

Algorithm stability is prominently reflected in the changes to the objective function, transitioning32

from mean squared errors (MSE) [Sutton and Barto, 2018] to mean squared bellman errors (MSBE)33

Baird and others [1995], then to norm of the expected TD update Sutton et al. [2009], and further to34

mean squared projected Bellman errors (MSPBE) Sutton et al. [2009]. On the other hand, algorithm35
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acceleration is more centered around optimizing the iterative update formula of the algorithm itself36

without altering the objective function, thereby speeding up the convergence rate of the algorithm. The37

emergence of new optimization objective functions often leads to the development of novel algorithms.38

The introduction of new algorithms, in turn, tends to inspire researchers to explore methods for39

accelerating algorithms, leading to the iterative creation of increasingly superior algorithms.40

The kernel loss function can be optimized using standard gradient-based methods, addressing the41

issue of double sampling in residual gradient algorithm Feng et al. [2019]. It ensures convergence42

in both on-policy and off-policy scenarios. The logistic bellman error is convex and smooth in the43

action-value function parameters, with bounded gradients Bas-Serrano et al. [2021]. In contrast, the44

squared Bellman error is not convex in the action-value function parameters, and RL algorithms45

based on recursive optimization using it are known to be unstable.46

It is necessary to propose a new objective function, but the mentioned objective functions above are47

all some form of error. Is minimizing error the only option for value-based reinforcement learning?48

For policy evaluation experiments, differences in objective functions may result in inconsistent fixed49

points. This inconsistency makes it difficult to uniformly compare the superiority of algorithms50

derived from different objective functions. However, for control experiments, since the choice of51

actions depends on the relative values of the Q values rather than their absolute values, the presence52

of solution bias is acceptable.53

Based on this observation, we propose alternate objective functions instead of minimizing errors.54

We minimize Variance of Bellman Error (VBE), Variance of Projected Bellman Error (VPBE), and55

Variance of the norm of the expected TD update (VNEU) and derive Variance Minimization (VM)56

algorithms. These algorithms preserve the invariance of the optimal policy in the control environments,57

but significantly reduce the variance of gradient estimation, and thus hastening convergence.58

The contributions of this paper are as follows: (1) Introduction of novel objective functions based on59

the invariance of the optimal policy. (2) Derived mang variance minimization algorithms, including60

on-policy and one off-policy. (3) Proof of their convergence. (4) Analysis of the convergence rate of61

on-policy algorithm. (5) Experiments demonstrating the faster convergence speed of the proposed62

algorithms.63

2 Background64

Reinforcement learning agent interacts with environment, observes state, takes sequential decision65

makings to influence environment, and obtains rewards. Consider an infinite-horizon discounted66

Markov Decision Process (MDP), defined by a tuple ⟨S,A,R, P, γ⟩, where S = {1, 2, . . . , N} is a67

finite set of states of the environment; A is a finite set of actions of the agent; R : S ×A× S → R68

is a bounded deterministic reward function; P : S × A × S → [0, 1] is the transition probability69

distribution; and γ ∈ (0, 1) is the discount factor Sutton and Barto [2018]. Due to the requirements70

of online learning, value iteration based on sampling is considered in this paper. In each sampling, an71

experience (or transition) ⟨s, a, s′, r⟩ is obtained.72

A policy is a mapping π : S × A→ [0, 1]. The goal of the agent is to find an optimal policy π∗ to73

maximize the expectation of a discounted cumulative rewards in a long period. State value function74

V π(s) for a stationary policy π is defined as:75

V π(s) = Eπ[

∞∑
k=0

γkRk|s0 = s].

Linear value function for state s ∈ S is defined as:76

Vθ(s) := θ⊤ϕ(s) =

m∑
i=1

θiϕi(s), (1)

where θ := (θ1, θ2, . . . , θm)⊤ ∈ Rm is a parameter vector, ϕ := (ϕ1, ϕ2, . . . , ϕm)⊤ ∈ Rm is a77

feature function defined on state space S, and m is the feature size.78

Tabular temporal difference (TD) learning Sutton and Barto [2018] has been successfully applied79

to small-scale problems. To deal with the well-known curse of dimensionality of large scale MDPs,80
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Table 1: Classification accuracies for naive Bayes and flexible Bayes on various data sets.

ACTION Q VALUE Q VALUE WITH BIAS

Q(s, a0) 1 5
Q(s, a1) 2 6
Q(s, a2) 3 7
Q(s, a3) 4 8
argmina Q(s, a) a3 a3

value function is usually approximated by a linear model, kernel methods, decision trees, or neural81

networks, etc. This paper focuses on the linear model, where features are usually hand coded by82

domain experts.83

TD learning can also be used to find optimal strategies. The problem of finding an optimal policy is84

often called the control problem. Two popular TD methods are Sarsa and Q-leaning. The former is85

an on-policy TD control, while the latter is an off-policy control.86

It is well known that TDC algorithm Sutton et al. [2009] guarantees convergence under off-policy87

conditions while the off-policy TD algorithm may diverge. The objective function of TDC is MSPBE.88

TDC is essentially an adjustment or correction of the TD update so that it follows the gradient of the89

MSPBE objective function. In the context of the TDC algorithm, the control algorithm is known as90

Greedy-GQ(λ) Sutton et al. [2009]. When λ is set to 0, it is denoted as GQ(0).91

3 Variance Minimization Algorithms92

3.1 Motivation93

As shown in Table 1, although there is a bias between the true value and the predicted value, action a394

is still chosen under the greedy-policy. On the contrary, supervised learning is usually used to predict95

temperature, humidity, morbidity, etc. If the bias is too large, the consequences could be serious.96

In addition, reward shaping can significantly speed up the learning by adding a shaping reward97

F (s, s′) to the original reward r, where F (s, s′) is the general form of any state-based shaping98

reward. Static potential-based reward shaping (Static PBRS) maintains the policy invariance if the99

shaping reward follows from F (s, s′) = γf(s′)− f(s) Ng et al. [1999].100

This means that we can make changes to the TD error δ = r + γθ⊤ϕ′ − θ⊤ϕ while still ensuring the101

invariance of the optimal policy,102

δ − ω = r + γθ⊤ϕ′ − θ⊤ϕ− ω,

where ω is a constant, acting as a static PBRS. This also means that algorithms with the optimization103

goal of minimizing errors, after introducing reward shaping, may result in larger or smaller bias.104

Fortunately, as discussed above, bias is acceptable in reinforcement learning. However, the problem105

is that selecting an appropriate ω requires expert knowledge. This forces us to learn ω dynamically,106

i.e., ω = ωt and dynamic PBRS can also maintain the policy invariance if the shaping reward is107

F (s, t, s′, t′) = γf(s′, t′)− f(s, t), where t is the time-step the agent reaches in state s Devlin and108

Kudenko [2012]. However, this result requires the convergence guarantee of the dynamic potential109

function f(s, t). If f(s, t) does not converge as the time-step t→∞, the Q-values of dynamic PBRS110

are not guaranteed to converge.111

Let fωt
(s) = ωt

γ−1 . Thus, Fωt
(s, s′) = γfωt

(s′) − fωt
(s) = ωt is a dynamic PBRS. And if ω112

converges finally, the dynamic potential function f(s, t) will converge. Bias is the expected difference113

between the predicted value and the true value. Therefore, under the premise of bootstrapping, we114

first think of letting ω
.
= E[E[δ|s]] = E[δ].115

As we all know, the optimization process of linear TD(0) (semi-gradient) and linear TDC are as116

follows, respectively:117

θ∗ = argmin
θ

E[(E[δ|s])2],
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Algorithm 1 VMTD algorithm with linear function approximation in the on-policy setting
Input: θ0, ω0, γ, learning rate αt and βt

repeat
For any episode, initialize θ0 arbitrarily, ω0 to 0, γ ∈ (0, 1], and αt and βt are constant.
for t = 0 to T − 1 do

Take At from St according to policy µ, and arrive at St+1

Observe sample (St,Rt+1,St+1) at time step t (with their corresponding state feature vectors)
δt = Rt+1 + γθ⊤t ϕ

′
t − θ⊤t ϕt

θt+1 ← θt + αt(δt − ωt)ϕt

ωt+1 ← ωt + βt(δt − ωt)
St = St+1

end for
until terminal episode

and118

θ∗ = argmin
θ

E[δϕ]⊤E[ϕϕ⊤]−1E[δϕ].

As a result, two novel objective functions and their corresponding algorithms are proposed, where ω119

is subsequently proven to converge, meaning that these two algorithms can maintain the invariance of120

the optimal strategy.121

3.2 Variance Minimization TD Learning: VMTD122

For on-policy learning, a novel objective function, Variance of Bellman Error (VBE), is proposed as123

follows:124

argminθ VBE(θ) = argminθ E[(E[δ|s]− E[E[δ|s]])2]
= argminθ,ω E[(E[δ|s]− ω)2].

(2)

Clearly, it is no longer to minimize Bellman errors.125

First, the parameter ω is derived directly based on stochastic gradient descent:126

ωk+1 ← ωk + βk(δk − ωk), (3)

where δk is the TD error as follows:127

δk = r + γθ⊤k ϕ
′
k − θ⊤k ϕk. (4)

Then, based on stochastic semi-gradient descent, the update of the parameter θ is as follows:128

θk+1 ← θk + αk(δk − ωk)ϕk. (5)

The pseudocode of the VMTD algorithm is shown in Algorithm 1.129

For control tasks, two extensions of VMTD are named VMSarsa and VMQ respectively, and the130

update formulas are shown below:131

θk+1 ← θk + αk(δk − ωk)ϕ(sk, ak). (6)

and132

ωk+1 ← ωk + βk(δk − ωk), (7)

where δk delta in VMSarsa is:133

δk = rk+1 + γθ⊤k ϕ(sk+1, ak+1)− θ⊤k ϕ(sk, ak), (8)

and δk delta in VMQ is:134

δk = rk+1 + γmax
a∈A

θ⊤k ϕ(sk+1, a)− θ⊤k ϕ(sk, ak). (9)
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3.3 Variance Minimization TDC Learning: VMTDC135

For off-policy learning, we employ a projection operator. The objective function is called Variance of136

Projected Bellman error (VPBE), and the corresponding algorithm is called VMTDC.137

VPBE(θ) = E[(δ − E[δ])ϕ]⊤E[ϕϕ⊤]−1E[(δ − E[δ])ϕ]
= E[(δ − ω)ϕ]⊤E[ϕϕ⊤]−1E[(δ − ω)ϕ],

(10)

where ω is used to estimate E[δ], i.e., ω .
= E[δ].138

The derivation process of the VMTDC algorithm is the same as that of the TDC algorithm, the only139

difference is that the original δ is replaced by δ−ω. Therefore, we can easily get the updated formula140

of VMTDC, as follows:141

θk+1 ← θk + αk[(δk − ωk)ϕ(sk)− γϕ(sk+1)(ϕ
⊤(sk)uk)], (11)

142

uk+1 ← uk + ζk[δk − ωk − ϕ⊤(sk)uk]ϕ(sk), (12)

and143

ωk+1 ← ωk + βk(δk − ωk), (13)

The pseudocode of the VMTDC algorithm for importance-sampling scenario is shown in Algorithm144

2 of Appendix A.3.145

Now, we will introduce the improved version of the GQ(0) algorithm, named VMGQ(0):146

θk+1 ← θk + αk[(δk − ωk)ϕ(sk, ak)
− γϕ(sk+1, A

∗
k+1)(ϕ

⊤(sk, ak)uk)],
(14)

147

uk+1 ← uk + ζk[(δk − uk)− ϕ⊤(sk, ak)uk]ϕ(sk, ak), (15)

and148

ωk+1 ← ωk + βk(δk − ωk), (16)

where δk is (9) and A∗
k+1 = argmaxa(θ

⊤
k ϕ(sk+1, a)).149

This paper also introduces an additional parameter ω into the GTD and GTD2 algorithms. For details,150

please refer to the appendix.151

4 Theoretical Analysis152

The purpose of this section is to establish the stabilities of the VMTD algorithm and the VMTDC153

algorithm, and also presents a corollary on the convergence rate of VMTD.154

Theorem 4.1. (Convergence of VMTD). In the case of on-policy learning, consider the iterations (3)155

and (5) with (4) of VMTD. Let the step-size sequences αk and βk, k ≥ 0 satisfy in this case αk, βk > 0,156

for all k,
∑∞

k=0 αk =
∑∞

k=0 βk = ∞,
∑∞

k=0 α
2
k < ∞,

∑∞
k=0 β

2
k < ∞, and αk = o(βk). Assume157

that (ϕk, rk, ϕ
′
k) is an i.i.d. sequence with uniformly bounded second moments, where ϕk and ϕ′

k158

are sampled from the same Markov chain. Let A = Cov(ϕ, ϕ− γϕ′), b = Cov(r, ϕ). Assume that159

matrix A is non-singular. Then the parameter vector θk converges with probability one to A−1b.160

Please refer to the appendix A.1 for detailed proof process.161

Theorem 3 in Dalal et al. [2020] provides a general conclusion on the convergence speed of all linear162

two-timescale algorithms. VMTD satisfies the assumptions of this theorem, leading to the following163

corollary.164

Corollary 4.2. Consider the Sparsely Projected variant of VMTD. Then, for αk = 1/(k + 1)α,165

βk = 1/(k + 1)β , 0 < β < α < 1, p > 1, with probility larger than 1− τ , for all k ≥ N3, we have166

||θ′k − θ∗|| ≤ C3,θ

√
ln(4d21(k + 1)p/τ)

(k + 1)α/2
(17)

167

||ω′
n − ω∗|| ≤ C3,ω

√
ln(4d22(k + 1)p/τ)

(k + 1)ω/2
, (18)
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A B C D E
0 0 0 0 0 1

Figure 1: Random walk.

7

1 2 3 4 5 6

Figure 2: 7-state version of Baird’s off-policy counterexample.

where d1 and d2 represent the dimensions of θ and ω, respectively. For VMTD, d2 = 1. The168

meanings of N3,C3,θ and C3,ω are explained in Dalal et al. [2020]. The formulas for θ′k and ω′
n can169

be found in (30) and (31).170

Please refer to the appendix A.2 for detailed proof process.171

Theorem 4.3. (Convergence of VMTDC). In the case of off-policy learning, consider the iterations172

(13), (12) and (11) of VMTDC. Let the step-size sequences αk, ζk and βk, k ≥ 0 satisfy in this case173

αk, ζk, βk > 0, for all k,
∑∞

k=0 αk =
∑∞

k=0 βk =
∑∞

k=0 ζk =∞,
∑∞

k=0 α
2
k <∞,

∑∞
k=0 ζ

2
k <∞,174 ∑∞

k=0 β
2
k < ∞, and αk = o(ζk), ζk = o(βk). Assume that (ϕk, rk, ϕ

′
k) is an i.i.d. sequence with175

uniformly bounded second moments. Let A = Cov(ϕ, ϕ− γϕ′), b = Cov(r, ϕ), and C = E[ϕϕ⊤].176

Assume that A and C are non-singular matrices. Then the parameter vector θk converges with177

probability one to A−1b.178

Please refer to the appendix A.3 for detailed proof process.179

5 Experimental Studies180

This section assesses algorithm performance through experiments, which are divided into policy181

evaluation experiments and control experiments.182

5.1 Testing Tasks183

Random-walk: as shown in Figure 1, all episodes start in the center state, C, and proceed to left184

or right by one state on each step, equiprobably. Episodes terminate either on the extreme left or185

the extreme right, and get a reward of +1 if terminate on the right, or 0 in the other case. In this186

task, the true value for each state is the probability of starting from that state and terminating on187

the right Sutton and Barto [2018]. Thus, the true values of states from A to E are 1
6 ,

2
6 ,

3
6 ,

4
6 ,

5
6 ,188

respectively. The discount factor γ = 1.0. There are three standard kinds of features for random-walk189

problems: tabular feature, inverted feature and dependent feature Sutton et al. [2009]. The feature190

matrices corresponding to three random walks are shown in Appendix B. Conduct experiments using191

an on-policy approach in the Random-walk environment.192

Baird’s off-policy counterexample: This task is well known as a counterexample, in which TD193

diverges Baird and others [1995]; Sutton et al. [2009]. As shown in Figure 2, reward for each194

transition is zero. Thus the true values are zeros for all states and for any given policy. The behaviour195

policy chooses actions represented by solid lines with a probability of 1
7 and actions represented by196

dotted lines with a probability of 6
7 . The target policy is expected to choose the solid line with more197

probability than 1
7 , and it chooses the solid line with probability of 1 in this paper. The discount198
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factor γ = 0.99, and the feature matrix is defined in Appendix B Baird and others [1995]; Sutton et199

al. [2009]; Maei [2011].200

Maze: The learning agent should find a shortest path from the upper left corner to the lower201

right corner. In each state, there are four alternative actions: up, down, left, and right,202

which takes the agent deterministically to the corresponding neighbour state, except when203

a movement is blocked by an obstacle or the edge of the maze. Rewards are204

−1 in all transitions until the agent reaches the goal state. The discount factor205

γ = 0.99, and states s are represented by tabular features.The maximum206

number of moves in the game is set to 1000.207

The other three control environments: Cliff Walking, Mountain Car, and208

Acrobot are selected from the gym official website and correspond to the209

following versions: “CliffWalking-v0”, “MountainCar-v0” and “Acrobot-v1”.210

For specific details, please refer to the gym official website. The maximum211

number of steps for the Mountain Car environment is set to 1000, while the default settings are used212

for the other two environments. In Mountain car and Acrobot, features are generated by tile coding.213

Please, refer to the Appendix B for the selection of learning rates for all experiments.214

5.2 Experimental Results and Analysis215

(a) Dependent (b) Tabular

(c) Inverted (d) counterexample

Figure 3: Learning curses of four evaluation environments.
For policy evaluation experiments, compare the performance of the VMTD, VMTDC, TD, and TDC216

algorithms. The vertical axis is unified as RVBE.217

For policy evaluation experiments, the criteria for evaluating algorithms vary. The objective function218

minimized by our proposed new algorithm differs from that of other algorithms. Therefore, to ensure219

fairness in comparisons, this study only contrasts algorithm experiments in controlled settings.220

This study will compare the performance of Sarsa, Q-learning, GQ(0), AC, VMSarsa, VMQ, and221

VMGQ(0) in four control environments.222

The learning curses of the algorithms corresponding to policy evaluation experiments and control223

experiments are shown in Figures 3 and 4, respectively. The shaded area in Figure 3, 4 represents the224

standard deviation (std).225

In the random-walk tasks, VMTD and VMTDC exhibit excellent performance, outperforming TD226

and TDC in the case of dependent random-walk.227

In the 7-state example counter task, TD diverges, while VMTDC converges and performs better than228

TDC. From the update formula, it can be observed that the VMTD algorithm, like TDC, is also an229
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adjustment or correction of the TD update. What is more surprising is that VMTD also maintains230

convergence and demonstrates the best performance.231

In Maze, Mountain Car, and Acrobot, the convergence speed of VMSarsa, VMQ, and VMGQ(0)232

has been significantly improved compared to Sarsa, Q-learning, and GQ(0), respectively. The233

performance of the AC algorithm is at an intermediate level. The performances of VMSarsa, VMQ,234

and VMGQ(0) in these three experimental environments have no significant differences.235

In Cliff Walking, Sarsa and VMSarsa converge to slightly worse solutions compared to other algo-236

rithms. The convergence speed of VMSarsa is significantly better than that of Sarsa. The convergence237

speed of VMGQ(0) and VMQ is better than other algorithms, and the performance of VMGQ(0) is238

slightly better than that of VMQ.239

In summary, the performance of VMSarsa, VMQ, and VMGQ(0) is better than that of other algorithms.240

In the Cliff Walking environment, the performance of VMGQ(0) is slightly better than that of241

VMSarsa and VMQ. In the other three experimental environments, the performances of VMSarsa,242

VMQ, and VMGQ(0) are close.

(a) Maze (b) Cliff Walking

(c) Mountain Car (d) Acrobot

Figure 4: Learning curses of four contral environments.
243

6 Related Work244

6.1 Difference between VMQ and R-learning245

Table 2: Difference between R-learning and tabular VMQ.

algorithms update formula
R-learning Qk+1(s, a)← Qk(s, a) + αk(rk+1 −mk +maxb∈A Qk(s, b)−Qk(s, a))

mk+1 ← mk + βk(rk+1 +maxb∈A Qk(s, b)−Qk(s, a)−mk)
tabular VMQ Qk+1(s, a)← Qk(s, a) + αk(rk+1 + γmaxb∈A Qk(s, b)−Qk(s, a)− ωk)

ωk+1 ← ωk + βk(rk+1 + γmaxb∈A Qk(s, b)−Qk(s, a)− ωk)

Tabular VMQ’s update formula bears some resemblance to R-learning’s update formula. As shown in246

Table 2, the update formulas of the two algorithms have the following differences:247

(1) The goal of the R-learning algorithm Schwartz [1993] is to maximize the average reward, rather248

than the cumulative reward, by learning an estimate of the average reward. This estimate m is then249

used to update the Q-values. On the contrary, the ω in the tabular VMQ update formula eventually250

converges to E[δ].251

(2) When γ = 1 in the tabular VMQ update formula, the R-learning update formula is formally the252
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same as the tabular VMQ update formula. Therefore, R-learning algorithm can be considered as a253

special case of VMQ algorithm in form.254

6.2 Variance Reduction for TD Learning255

The TD with centering algorithm (CTD) Korda and La [2015] was proposed, which directly applies256

variance reduction techniques to the TD algorithm. The CTD algorithm updates its parameters using257

the average gradient of a batch of Markovian samples and a projection operator. Unfortunately, the258

authors’ analysis of the CTD algorithm contains technical errors. The VRTD algorithm Xu et al.259

[2020] is also a variance-reduced algorithm that updates its parameters using the average gradient of260

a batch of i.i.d. samples. The authors of VRTD provide a technically sound analysis to demonstrate261

the advantages of variance reduction.262

6.3 Variance Reduction for Policy Gradient Algorithms263

Policy gradient algorithms are a class of reinforcement learning algorithms that directly optimize264

cumulative rewards. REINFORCE is a Monte Carlo algorithm that estimates gradients through265

sampling, but may have a high variance. Baselines are introduced to reduce variance and to accelerate266

learning Sutton and Barto [2018]. In Actor-Critic, value function as a baseline and bootstrapping are267

used to reduce variance, also accelerating convergence Sutton and Barto [2018]. TRPO Schulman et268

al. [2015] and PPO Schulman et al. [2017] use generalized advantage estimation, which combines269

multi-step bootstrapping and Monte Carlo estimation to reduce variance, making gradient estimation270

more stable and accelerating convergence.271

In Variance Minimization, the incorporation of ω .
= E[δ] bears a striking resemblance to the use of272

a baseline in policy gradient methods. The introduction of a baseline in policy gradient techniques273

does not alter the expected value of the update; rather, it significantly impacts the variance of gradient274

estimation. The addition of ω .
= E[δ] in Variance Minimization preserves the invariance of the275

optimal policy while stabilizing gradient estimation, reducing the variance of gradient estimation,276

and hastening convergence.277

7 Conclusion and Future Work278

Value-based reinforcement learning typically aims to minimize error as an optimization objective. As279

an alternation, this study proposes new objective functions: VBE, VPBE and VNEU, and derives many280

variance minimization algorithms, including VMTD, VMTDC, VMGTD, VMGTD2 and VMETD.281

All algorithms demonstrated superior performance in policy evaluation and control experiments.282

Future work may include, but are not limited to, (1) analysis of the convergence rate of VMTDC. (2)283

extensions of VBE and VPBE to multi-step returns. (3) extensions to nonlinear approximations, such284

as neural networks.285

A Relevant proofs286

A.1 Proof of Theorem 4.1287

Proof. The proof is based on Borkar’s Theorem for general stochastic approximation recursions with288

two time scales Borkar [1997].289

A new one-step linear TD solution is defined as:290

0 = E[(δ − E[δ])ϕ] = −Aθ + b.

Thus, the VMTD’s solution is θVMTD = A−1b.291

First, note that recursion (5) can be rewritten as292

θk+1 ← θk + βkξ(k),

where293

ξ(k) =
αk

βk
(δk − ωk)ϕk

9



Due to the settings of step-size schedule αk = o(βk), ξ(k) → 0 almost surely as k → ∞. That is294

the increments in iteration (3) are uniformly larger than those in (5), thus (3) is the faster recursion.295

Along the faster time scale, iterations of (3) and (5) are associated to ODEs system as follows:296

θ̇(t) = 0, (19)
297

ω̇(t) = E[δt|θ(t)]− ω(t). (20)
Based on the ODE (19), θ(t) ≡ θ when viewed from the faster timescale. By the Hirsch lemma298

Hirsch [1989], it follows that ||θk − θ|| → 0 a.s. as k → ∞ for some θ that depends on the initial299

condition θ0 of recursion (5). Thus, the ODE pair (19)-(20) can be written as300

ω̇(t) = E[δt|θ]− ω(t). (21)
Consider the function h(ω) = E[δ|θ] − ω, i.e., the driving vector field of the ODE (21). It is easy301

to find that the function h is Lipschitz with coefficient −1. Let h∞(·) be the function defined by302

h∞(ω) = limx→∞
h(xω)

x . Then h∞(ω) = −ω, is well-defined. For (21), ω∗ = E[δ|θ] is the unique303

globally asymptotically stable equilibrium. For the ODE304

ω̇(t) = h∞(ω(t)) = −ω(t), (22)

apply V⃗ (ω) = (−ω)⊤(−ω)/2 as its associated strict Liapunov function. Then, the origin of (22) is a305

globally asymptotically stable equilibrium.306

Consider now the recursion (3). Let Mk+1 = (δk − ωk) − E[(δk − ωk)|F(k)], where F(k) =307

σ(ωl, θl, l ≤ k;ϕs, ϕ
′
s, rs, s < k), k ≥ 1 are the sigma fields generated by ω0, θ0, ωl+1, θl+1, ϕl, ϕ

′
l,308

0 ≤ l < k. It is easy to verify that Mk+1, k ≥ 0 are integrable random variables that satisfy309

E[Mk+1|F(k)] = 0, ∀k ≥ 0. Because ϕk, rk, and ϕ′
k have uniformly bounded second moments, it310

can be seen that for some constant c1 > 0, ∀k ≥ 0,311

E[||Mk+1||2|F(k)] ≤ c1(1 + ||ωk||2 + ||θk||2).

Now Assumptions (A1) and (A2) of Borkar and Meyn [2000] are verified. Furthermore, Assumptions312

(TS) of Borkar and Meyn [2000] is satisfied by our conditions on the step-size sequences αk, βk.313

Thus, by Theorem 2.2 of Borkar and Meyn [2000] we obtain that ||ωk − ω∗|| → 0 almost surely as314

k →∞.315

Consider now the slower time scale recursion (5). Based on the above analysis, (5) can be rewritten as316

θk+1 ← θk + αk(δk − E[δk|θk])ϕk.

Let G(k) = σ(θl, l ≤ k;ϕs, ϕ
′
s, rs, s < k), k ≥ 1 be the sigma fields generated by θ0, θl+1, ϕl, ϕ

′
l,317

0 ≤ l < k. Let Zk+1 = Yt − E[Yt|G(k)], where318

Yk = (δk − E[δk|θk])ϕk.

Consequently,319

E[Yt|G(k)] = E[(δk − E[δk|θk])ϕk|G(k)]
= E[δkϕk|θk]− E[E[δk|θk]ϕk]
= E[δkϕk|θk]− E[δk|θk]E[ϕk]
= Cov(δk|θk, ϕk),

where Cov(·, ·) is a covariance operator.320

Thus,321

Zk+1 = (δk − E[δk|θk])ϕk − Cov(δk|θk, ϕk).

It is easy to verify that Zk+1, k ≥ 0 are integrable random variables that satisfy E[Zk+1|G(k)] = 0,322

∀k ≥ 0. Also, because ϕk, rk, and ϕ′
k have uniformly bounded second moments, it can be seen that323

for some constant c2 > 0, ∀k ≥ 0,324

E[||Zk+1||2|G(k)] ≤ c2(1 + ||θk||2).

Consider now the following ODE associated with (5):325

θ̇(t) = Cov(δ|θ(t), ϕ)
= Cov(r + (γϕ′ − ϕ)⊤θ(t), ϕ)
= Cov(r, ϕ)− Cov(θ(t)⊤(ϕ− γϕ′), ϕ)
= Cov(r, ϕ)− θ(t)⊤Cov(ϕ− γϕ′, ϕ)
= Cov(r, ϕ)− Cov(ϕ− γϕ′, ϕ)⊤θ(t)
= Cov(r, ϕ)− Cov(ϕ, ϕ− γϕ′)θ(t)
= −Aθ(t) + b.

(23)
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Let h⃗(θ(t)) be the driving vector field of the ODE (23).326

h⃗(θ(t)) = −Aθ(t) + b.

Consider the cross-covariance matrix,327

A = Cov(ϕ, ϕ− γϕ′)

= Cov(ϕ,ϕ)+Cov(ϕ−γϕ′,ϕ−γϕ′)−Cov(γϕ′,γϕ′)
2

= Cov(ϕ,ϕ)+Cov(ϕ−γϕ′,ϕ−γϕ′)−γ2Cov(ϕ′,ϕ′)
2

= (1−γ2)Cov(ϕ,ϕ)+Cov(ϕ−γϕ′,ϕ−γϕ′)
2 ,

(24)

where we eventually used Cov(ϕ′, ϕ′) = Cov(ϕ, ϕ) 1. Note that the covariance matrix Cov(ϕ, ϕ) and328

Cov(ϕ−γϕ′, ϕ−γϕ′) are semi-positive definite. Then, the matrix A is semi-positive definite because329

A is linearly combined by two positive-weighted semi-positive definite matrice (24). Furthermore, A330

is nonsingular due to the assumption. Hence, the cross-covariance matrix A is positive definite.331

Therefore, θ∗ = A−1b can be seen to be the unique globally asymptotically stable equilibrium for332

ODE (23). Let h⃗∞(θ) = limr→∞
h⃗(rθ)

r . Then h⃗∞(θ) = −Aθ is well-defined. Consider now the333

ODE334

θ̇(t) = −Aθ(t). (25)
The ODE (25) has the origin as its unique globally asymptotically stable equilibrium. Thus, the335

assumption (A1) and (A2) are verified.336

A.2 Proof of Corollary 4.2337

The update formulas in linear two-timescale algorithms are as follows:338

θk+1 = θk + αk[h1(θk, ωk) +M
(1)
k+1], (26)

339

ωk+1 = ωk + αk[h2(θk, ωk) +M
(2)
k+1]. (27)

where αk, βk ∈ R are stepsizes and M (1) ∈ Rd1 ,M (2) ∈ Rd2 denote noise. h1 : Rd1 × Rd2 → Rd1340

and h2 : Rd1 × Rd2 → Rd2 have the form, respectively,341

h1(θ, ω) = v1 − Γ1θ −W1ω, (28)
342

h2(θ, ω) = v2 − Γ2θ −W2ω, (29)

where v1 ∈ Rd1 , v2 ∈ Rd2 , Γ1 ∈ Rd1×d1 , Γ2 ∈ Rd2×d1 , W1 ∈ Rd1×d2 and W2 ∈ Rd2×d2 . d1 and343

d2 are the dimensions of vectors θ and ω, respectively.344

For Theorem 3 in Dalal et al. [2020], the theorem still holds even when d¯¯1 is not equal to d2. For345

the VMTD algorithm, d2 is equal to 1. Dalal et al. [2020] presents the matrix assumption, step size346

assumption, and defines sparse projection.347

Assumption A.1. (Matrix Assumption). W2 and X1 = Γ1 −W1W
−1
2 Γ2 are positive definite(not348

necessarily symmetric).349

Assumption A.2. (Step Size Assumption). αk = (k + 1)−α and βk = (k + 1)−β , where 1 > α >350

β > 0.351

Definition A.3. (Sparse Projection). For R > 0, let ΠR(x) = min{1, R/||x||}. x be the projection352

into the ball with redius R around the origin. The sparse projection operator353

Πn,R =

{
ΠR, if k = nn − 1 for some n ∈ Z>0,

I, otherwise.

We call it sparse as it projects only on specific indices that are exponentially far apart.354

Pick an arbitrary p > 1. Fix some constant Rθ
proj > 0 and Rω

proj > 0 for the radius of the projection355

ball. Further, let356

θ∗ = X−1
1 b1, ω

∗ = W−1
2 (v2 − Γ2θ

∗)

1The covariance matrix Cov(ϕ′, ϕ′) is equal to the covariance matrix Cov(ϕ, ϕ) if the initial state is re-
reachable or initialized randomly in a Markov chain for on-policy update.
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with b1 = v1 −W1W
−1
2 v2. The formula for the sparse projection update in linear two-timescale357

algorithms is as follows:358

θ′k+1 = Πk+1,Rθ
proj
(θ′k + αk[h1(θ

′
k, ω

′
k) +M

(1′)
k+1]), (30)

359

ω′
k+1 = Πk+1,Rω

proj
(ω′

k + βk[h2(θ
′
k, ω

′
k) +M

(2′)
k+1]). (31)

Proof. As long as the VMTD algorithm satisfies Assumption A.1, the convergence speed of the360

VMTD algorithm can be obtained.361

VMTD’s update rule is362

θk+1 = θk + αk(δk − ωk)ϕk.
363

ωk+1 = ωk + βk(δk − ωk).

Thus, h1(θ, ω) = Cov(r, ϕ) − Cov(ϕ, ϕ − γϕ′)θ, h2(θ, ω) = E[r] + E[γϕ′⊤ − ϕ⊤]θ − ω, Γ1 =364

Cov(ϕ, ϕ − γϕ′), W1 = 0 and Γ2 = −E[γϕ′⊤ − ϕ⊤], W2 = 1, v2 = E[r]. Additionally, X1 =365

Γ1 −W1W
−1
2 Γ2 = Cov(ϕ, ϕ − γϕ′). It can be deduced from the proof A.1 that X1 is a positive366

definite matrix. The VMTD algorithm satisfies the Assumption A.1. By the proof A.1, Definition 1 in367

Dalal et al. [2020] is satisfied. We can apply the Theorem 3 in Dalal et al. [2020] to get the Corollary368

4.2.369

370

A.3 Proof of Theorem 4.3371

Proof. The proof is similar to that given by Sutton et al. [2009] for TDC, but it is based on multi-372

time-scale stochastic approximation.373

For the VMTDC algorithm, a new one-step linear TD solution is defined as:374

0 = E[(ϕ− γϕ′ − E[ϕ− γϕ′])ϕ⊤]E[ϕϕ⊤]−1E[(δ − E[δ])ϕ] = A⊤C−1(−Aθ + b).

The matrix A⊤C−1A is positive definite. Thus, the VMTD’s solution is θVMTDC = θVMTD = A−1b.375

First, note that recursion (11) and (12) can be rewritten as, respectively,376

θk+1 ← θk + ζkx(k),
377

uk+1 ← uk + βky(k),

where378

x(k) =
αk

ζk
[(δk − ωk)ϕk − γϕ′

k(ϕ
⊤
k uk)],

379

y(k) =
ζk
βk

[δk − ωk − ϕ⊤
k uk]ϕk.

Recursion (11) can also be rewritten as380

θk+1 ← θk + βkz(k),

where381

z(k) =
αk

βk
[(δk − ωk)ϕk − γϕ′

k(ϕ
⊤
k uk)],

Due to the settings of step-size schedule αk = o(ζk), ζk = o(βk), x(k)→ 0, y(k)→ 0, z(k)→ 0382

almost surely as k → 0. That is that the increments in iteration (13) are uniformly larger than those383

in (12) and the increments in iteration (12) are uniformly larger than those in (11), thus (13) is the384

fastest recursion, (12) is the second fast recursion and (11) is the slower recursion. Along the fastest385

time scale, iterations of (11), (12) and (13) are associated to ODEs system as follows:386

θ̇(t) = 0, (32)
387

u̇(t) = 0, (33)
388

ω̇(t) = E[δt|u(t), θ(t)]− ω(t). (34)
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Based on the ODE (32) and (33), both θ(t) ≡ θ and u(t) ≡ u when viewed from the fastest389

timescale. By the Hirsch lemma Hirsch [1989], it follows that ||θk − θ|| → 0 a.s. as k → ∞390

for some θ that depends on the initial condition θ0 of recursion (11) and ||uk − u|| → 0 a.s. as391

k →∞ for some u that depends on the initial condition u0 of recursion (12). Thus, the ODE pair392

(32)-(refomegavmtdcFastest) can be written as393

ω̇(t) = E[δt|u, θ]− ω(t). (35)

Consider the function h(ω) = E[δ|θ, u] − ω, i.e., the driving vector field of the ODE (35). It is394

easy to find that the function h is Lipschitz with coefficient −1. Let h∞(·) be the function defined395

by h∞(ω) = limr→∞
h(rω)

r . Then h∞(ω) = −ω, is well-defined. For (35), ω∗ = E[δ|θ, u] is the396

unique globally asymptotically stable equilibrium. For the ODE397

ω̇(t) = h∞(ω(t)) = −ω(t), (36)

apply V⃗ (ω) = (−ω)⊤(−ω)/2 as its associated strict Liapunov function. Then, the origin of (36) is a398

globally asymptotically stable equilibrium.399

Consider now the recursion (13). Let Mk+1 = (δk − ωk) − E[(δk − ωk)|F(k)], where400

F(k) = σ(ωl, ul, θl, l ≤ k;ϕs, ϕ
′
s, rs, s < k), k ≥ 1 are the sigma fields generated by401

ω0, u0, θ0, ωl+1, ul+1, θl+1, ϕl, ϕ
′
l, 0 ≤ l < k. It is easy to verify that Mk+1, k ≥ 0 are inte-402

grable random variables that satisfy E[Mk+1|F(k)] = 0, ∀k ≥ 0. Because ϕk, rk, and ϕ′
k have403

uniformly bounded second moments, it can be seen that for some constant c1 > 0, ∀k ≥ 0,404

E[||Mk+1||2|F(k)] ≤ c1(1 + ||ωk||2 + ||uk||2 + ||θk||2).

Now Assumptions (A1) and (A2) of Borkar and Meyn [2000] are verified. Furthermore, Assumptions405

(TS) of Borkar and Meyn [2000] is satisfied by our conditions on the step-size sequences αk,ζk, βk.406

Thus, by Theorem 2.2 of Borkar and Meyn [2000] we obtain that ||ωk − ω∗|| → 0 almost surely as407

k →∞.408

Consider now the second time scale recursion (12). Based on the above analysis, (12) can be rewritten409

as410

θ̇(t) = 0, (37)
411

u̇(t) = E[(δt − E[δt|u(t), θ(t)])ϕt|θ(t)]− Cu(t). (38)

The ODE (37) suggests that θ(t) ≡ θ (i.e., a time invariant parameter) when viewed from the second412

fast timescale. By the Hirsch lemma Hirsch [1989], it follows that ||θk − θ|| → 0 a.s. as k →∞ for413

some θ that depends on the initial condition θ0 of recursion (11).414

Consider now the recursion (12). Let Nk+1 = ((δk − E[δk]) − ϕkϕ
⊤
k uk) − E[((δk − E[δk]) −415

ϕkϕ
⊤
k uk)|I(k)], where I(k) = σ(ul, θl, l ≤ k;ϕs, ϕ

′
s, rs, s < k), k ≥ 1 are the sigma fields416

generated by u0, θ0, ul+1, θl+1, ϕl, ϕ
′
l, 0 ≤ l < k. It is easy to verify that Nk+1, k ≥ 0 are integrable417

random variables that satisfy E[Nk+1|I(k)] = 0, ∀k ≥ 0. Because ϕk, rk, and ϕ′
k have uniformly418

bounded second moments, it can be seen that for some constant c2 > 0, ∀k ≥ 0,419

E[||Nk+1||2|I(k)] ≤ c2(1 + ||uk||2 + ||θk||2).

Because θ(t) ≡ θ from (37), the ODE pair (37)-(38) can be written as420

u̇(t) = E[(δt − E[δt|θ])ϕt|θ]− Cu(t). (39)

Now consider the function h(u) = E[δt − E[δt|θ]|θ]− Cu, i.e., the driving vector field of the ODE421

(39). For (39), u∗ = C−1E[(δ − E[δ|θ])ϕ|θ] is the unique globally asymptotically stable equilibrium.422

Let h∞(u) = −Cu. For the ODE423

u̇(t) = h∞(u(t)) = −Cu(t), (40)

the origin of (40) is a globally asymptotically stable equilibrium because C is a positive definite424

matrix (because it is nonnegative definite and nonsingular). Now Assumptions (A1) and (A2) of425

Borkar and Meyn [2000] are verified. Furthermore, Assumptions (TS) of Borkar and Meyn [2000] is426

satisfied by our conditions on the step-size sequences αk,ζk, βk. Thus, by Theorem 2.2 of Borkar427

and Meyn [2000] we obtain that ||uk − u∗|| → 0 almost surely as k →∞.428
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Consider now the slower timescale recursion (11). In the light of the above, (11) can be rewritten as429

θk+1 ← θk + αk(δk − E[δk|θk])ϕk − αkγϕ
′
k(ϕ

⊤
k C

−1E[(δk − E[δk|θk])ϕ|θk]). (41)

Let G(k) = σ(θl, l ≤ k;ϕs, ϕ
′
s, rs, s < k), k ≥ 1 be the sigma fields generated by θ0, θl+1, ϕl, ϕ

′
l,430

0 ≤ l < k. Let431

Zk+1 = ((δk − E[δk|θk])ϕk − γϕ′
kϕ

⊤
k C

−1E[(δk − E[δk|θk])ϕ|θk])
−E[((δk − E[δk|θk])ϕk − γϕ′

kϕ
⊤
k C

−1E[(δk − E[δk|θk])ϕ|θk])|G(k)]
= ((δk − E[δk|θk])ϕk − γϕ′

kϕ
⊤
k C

−1E[(δk − E[δk|θk])ϕ|θk])
−E[(δk − E[δk|θk])ϕk|θk]− γE[ϕ′ϕ⊤]C−1E[(δk − E[δk|θk])ϕk|θk].

It is easy to see that Zk, k ≥ 0 are integrable random variables and E[Zk+1|G(k)] = 0, ∀k ≥ 0.432

Further,433

E[||Zk+1||2|G(k)] ≤ c3(1 + ||θk||2), k ≥ 0

for some constant c3 ≥ 0, again beacuse ϕk, rk, and ϕ′
k have uniformly bounded second moments, it434

can be seen that for some constant.435

Consider now the following ODE associated with (11):436

θ̇(t) = (I − E[γϕ′ϕ⊤]C−1)E[(δ − E[δ|θ(t)])ϕ|θ(t)]. (42)

Let437

h⃗(θ(t)) = (I − E[γϕ′ϕ⊤]C−1)E[(δ − E[δ|θ(t)])ϕ|θ(t)]
= (C − E[γϕ′ϕ⊤])C−1E[(δ − E[δ|θ(t)])ϕ|θ(t)]
= (E[ϕϕ⊤]− E[γϕ′ϕ⊤])C−1E[(δ − E[δ|θ(t)])ϕ|θ(t)]
= A⊤C−1(−Aθ(t) + b),

because E[(δ − E[δ|θ(t)])ϕ|θ(t)] = −Aθ(t) + b, where A = Cov(ϕ, ϕ− γϕ′), b = Cov(r, ϕ), and438

C = E[ϕϕ⊤]439

Therefore, θ∗ = A−1b can be seen to be the unique globally asymptotically stable equilibrium for440

ODE (42). Let h⃗∞(θ) = limr→∞
h⃗(rθ)

r . Then h⃗∞(θ) = −A⊤C−1Aθ is well-defined. Consider441

now the ODE442

θ̇(t) = −A⊤C−1Aθ(t). (43)

Because C−1 is positive definite and A has full rank (as it is nonsingular by assumption), the matrix443

A⊤C−1A is also positive definite. The ODE (43) has the origin as its unique globally asymptotically444

stable equilibrium. Thus, the assumption (A1) and (A2) are verified.445

The proof is given above. In the fastest time scale, the parameter w converges to E[δ|uk, θk]. In the446

second fast time scale, the parameter u converges to C−1E[(δ − E[δ|θk])ϕ|θk]. In the slower time447

scale, the parameter θ converges to A−1b.448

B Experimental details449

The feature matrices corresponding to three random walks are shown below respectively:450

Φtabular =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


451

Φinverted =


0 1

2
1
2

1
2

1
2

1
2 0 1

2
1
2

1
2

1
2

1
2 0 1

2
1
2

1
2

1
2

1
2 0 1

2
1
2

1
2

1
2

1
2 0


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Algorithm 2 VMTDC algorithm with linear function approximation in the off-policy setting
Input: θ0, u0, ω0, γ, learning rate αt, ζt and βt, behavior policy µ and target policy π
repeat

For any episode, initialize θ0 arbitrarily, ut and ω0 to 0, γ ∈ (0, 1], and αt, ζt and βt are
constant.
Output: θ∗.
for t = 0 to T − 1 do

Take At from St according to µ, and arrive at St+1

Observe sample (St,Rt+1,St+1) at time step t (with their corresponding state feature vectors)
δt = Rt+1 + γθ⊤t ϕt+1 − θ⊤t ϕt

ρt ← π(At|St)
µ(At|St)

θt+1 ← θt + αtρt[(δt − ωt)ϕt − γϕt+1(ϕ
⊤
t ut)]

ut+1 ← ut + ζt[ρt(δt − ωt)− ϕ⊤
t ut]ϕt

ωt+1 ← ωt + βtρt(δt − ωt)
St = St+1

end for
until terminal episode

Algorithm 3 VMGTD algorithm with linear function approximation in the off-policy setting
Input: θ0, u0, ω0, γ, learning rate αt, ζt and βt, behavior policy µ and target policy π
repeat

For any episode, initialize θ0 arbitrarily, ut and ω0 to 0, γ ∈ (0, 1], and αt, ζt and βt are
constant.
Output: θ∗.
for t = 0 to T − 1 do

Take At from St according to µ, and arrive at St+1

Observe sample (St,Rt+1,St+1) at time step t (with their corresponding state feature vectors)
δt = Rt+1 + γθ⊤t ϕt+1 − θ⊤t ϕt

ρt ← π(At|St)
µ(At|St)

θt+1 ← θt + αtρt[ϕt − γϕt+1]ϕ
⊤
t ut

ut+1 ← ut + ζt[ρt(δt − ωt)ϕt − ut]
ωt+1 ← ωt + βtρt(δt − ωt)
St = St+1

end for
until terminal episode

452

Φdependent =


1 0 0
1√
2

1√
2

0
1√
3

1√
3

1√
3

0 1√
2

1√
2

0 0 1


Three random walk experiments: the α values for all algorithms are in the range of453

{0.008, 0.015, 0.03, 0.06, 0.12, 0.25, 0.5}. For the TDC algorithm, the range of the ratio ζ
α is454

{ 1
512 ,

1
256 ,

1
128 ,

1
64 ,

1
32 ,

1
16 ,

1
8 ,

1
4 ,

1
2 , 1, 2}. For the VMTD algorithm, the range of the ratio β

α is455

{ 1
512 ,

1
256 ,

1
128 ,

1
64 ,

1
32 ,

1
16 ,

1
8 ,

1
4 ,

1
2 , 1, 2}. It can be observed from the update formula of VMTDC that456

when ζ takes a very small value, the VMTDC update tends to be similar to VMTD update. Similarly,457

when β takes a very small value, the VMTDC update tends to be similar to TDC update. Through458

experiments, it was found that setting ζ to a small value makes VMTDC updates approach VMTD459

updates, resulting in better performance. Therefore, for the VMTDC algorithm, the range of β
α ratio460

is { 1
512 ,

1
256 ,

1
128 ,

1
64 ,

1
32 ,

1
16 ,

1
8 ,

1
4 ,

1
2 , 1, 2}, and the range of ζ is {0.1, 0.01, 0.001, 0.0001, 0.00001}.461

The learning curves in Figure 3 correspond to the optimal parameters.462
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Algorithm 4 VMGTD2 algorithm with linear function approximation in the off-policy setting
Input: θ0, u0, ω0, γ, learning rate αt, ζt and βt, behavior policy µ and target policy π
repeat

For any episode, initialize θ0 arbitrarily, ut and ω0 to 0, γ ∈ (0, 1], and αt, ζt and βt are
constant.
Output: θ∗.
for t = 0 to T − 1 do

Take At from St according to µ, and arrive at St+1

Observe sample (St,Rt+1,St+1) at time step t (with their corresponding state feature vectors)
δt = Rt+1 + γθ⊤t ϕt+1 − θ⊤t ϕt

ρt ← π(At|St)
µ(At|St)

θt+1 ← θt + αtρt[ϕt − γϕt+1]ϕ
⊤
t ut

ut+1 ← ut + ζt[ρt(δt − ωt)− ϕ⊤
t ut]ϕt

ωt+1 ← ωt + βtρt(δt − ωt)
St = St+1

end for
until terminal episode

The feature matrix of 7-state version of Baird’s off-policy counterexample is defined as follow:463

ΦCounter =



1 2 0 0 0 0 0 0
1 0 2 0 0 0 0 0
1 0 0 2 0 0 0 0
1 0 0 0 2 0 0 0
1 0 0 0 0 2 0 0
1 0 0 0 0 0 2 0
2 0 0 0 0 0 0 1


7-state version of Baird’s off-policy counterexample: for TD algorithm, α is set to 0.1. For the464

TDC algorithm, the range of α is {0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, and the range465

of ζ is {0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5}. For the VMTD al-466

gorithm, the range of α is {0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, and the range of β467

is {0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5}. Through experiments, it468

was found that setting ζ to a small value makes VMTDC updates approach VMTD updates, resulting469

in better performance. Therefore, for the VMTDC algorithm, The range of values for α and β is470

the same as that of VMTD and the range of ζ is {0.1, 0.01, 0.001, 0.0001, 0.00001}. The learning471

curves in Figure 4 correspond to the optimal parameters. For all policy evaluation experiments, each472

experiment is independently run 100 times.473

For the four control experiments: The learning rates for each algorithm in all experiments are shown474

in Table 3. For all control experiments, each experiment is independently run 50 times.475

Table 3: Learning rates (lr) of four control experiments.

algorithms(lr)
envs Maze Cliff walking Mountain Car Acrobot

Sarsa(α) 0.1 0.1 0.1 0.1
GQ(0)(α, ζ) 0.1, 0.003 0.1, 0.004 0.1, 0.01 0.1, 0.01

VMSarsa(α, β) 0.1, 0.001 0.1, 1e-4 0.1, 1e-4 0.1, 1e-4
VMGQ(0)(α, ζ, β) 0.1, 0.001, 0.001 0.1, 0.005, 1e-4 0.1, 5e-4, 1e-4 0.1, 5e-4, 1e-4
AC(lractor, lrcritic) 0.01, 0.1 0.01, 0.01 0.01, 0.05 0.01, 0.05

Q-learning(α) 0.1 0.1 0.1 0.1
VMQ(α, β) 0.1, 0.001 0.1, 1e-4 0.1, 1e-4 0.1, 1e-4
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