import os import numpy as np import argparse from data_presister import DataPersister, ParameterBuilder from utils import save_result, Configuration, save_value_function, get_save_value_function_steps from Registry.AlgRegistry import alg_dict from Registry.EnvRegistry import environment_dict from Registry.TaskRegistry import task_dict from Job.JobBuilder import default_params from Environments.rendering import ErrorRender def learn(config: Configuration): params = ParameterBuilder().add_algorithm_params(config).build() if not os.path.exists(config.save_path): os.makedirs(config.save_path, exist_ok=True) env = environment_dict[config.environment]() rmsve = np.zeros((task_dict[config.task].num_of_policies(), config.num_steps, config.num_of_runs)) for run in range(config.num_of_runs): random_seed = (run + config.num_of_runs) if config.rerun else run np.random.seed(random_seed) task = task_dict[config.task](run_number=run, num_steps=config.num_steps) agent = alg_dict[config.algorithm](task, **params) rmsve_of_run = np.zeros((task.num_policies, task.num_steps)) agent.state = env.reset() error_render = ErrorRender(task.num_policies, task.num_steps) for step in range(task.num_steps): rmsve_of_run[:, step], error = agent.compute_rmsve() if config.render: error_render.add_error(error) agent.action = agent.choose_behavior_action() agent.next_state, r, is_terminal, info = env.step(agent.action) agent.learn(agent.state, agent.next_state, r, is_terminal) if config.render: env.render(mode='screen', render_cls=error_render) if config.save_value_function and (step in get_save_value_function_steps(task.num_steps)): save_value_function(agent.compute_value_function(), config.save_path, step, run) if is_terminal: agent.state = env.reset() agent.reset() continue agent.state = agent.next_state print(np.mean(rmsve_of_run, axis=0)) rmsve[:, :, run] = rmsve_of_run rmsve_of_runs = np.transpose(np.mean(rmsve, axis=0)) # Average over all policies. # _RMSVE_mean_over_runs DataPersister.save_result(np.mean(rmsve_of_runs, axis=0), '_RMSVE_mean_over_runs', config) DataPersister.save_result(np.std(rmsve_of_runs, axis=0, ddof=1) / np.sqrt(config.num_of_runs), '_RMSVE_stderr_over_runs', config) # _RMSVE_stderr_over_runs save_result(config.save_path, '_RMSVE_stderr_over_runs', np.mean(rmsve_of_runs, axis=0), params, config.rerun) save_result(config.save_path, '_RMSVE_stderr_over_runs', np.std(rmsve_of_runs, axis=0, ddof=1) / np.sqrt(config.num_of_runs), params, config.rerun) # _mean_stderr_final final_errors_mean_over_steps = np.mean(rmsve_of_runs[:, config.num_steps - int(0.01 * config.num_steps) - 1:], axis=1) DataPersister.save_result(np.array([np.mean(final_errors_mean_over_steps), np.std(final_errors_mean_over_steps, ddof=1) / np.sqrt(config.num_of_runs)]), '_mean_stderr_final', config) save_result(config.save_path, '_mean_stderr_final', np.array([np.mean(final_errors_mean_over_steps), np.std(final_errors_mean_over_steps, ddof=1) / np.sqrt(config.num_of_runs)]), params, config.rerun) # _mean_stderr_auc auc_mean_over_steps = np.mean(rmsve_of_runs, axis=1) DataPersister.save_result(np.array([np.mean(auc_mean_over_steps), np.std(auc_mean_over_steps, ddof=1) / np.sqrt(config.num_of_runs)]), '_mean_stderr_auc', config) save_result(config.save_path, '_mean_stderr_auc', np.array([np.mean(auc_mean_over_steps), np.std(auc_mean_over_steps, ddof=1) / np.sqrt(config.num_of_runs)]), params, config.rerun) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--alpha', '-a', type=float, default=default_params['meta_parameters']['alpha']) parser.add_argument('--lmbda', '-l', type=float, default=default_params['meta_parameters']['lmbda']) parser.add_argument('--eta', '-et', type=float, default=default_params['meta_parameters']['eta']) parser.add_argument('--beta', '-b', type=float, default=default_params['meta_parameters']['beta']) parser.add_argument('--zeta', '-z', type=float, default=default_params['meta_parameters']['zeta']) parser.add_argument('--tdrc_beta', '-tb', type=float, default=default_params['meta_parameters']['tdrc_beta']) parser.add_argument('--gem_alpha', '-ga', type=float, default=default_params['meta_parameters']['gem_alpha']) parser.add_argument('--gem_beta', '-gb', type=float, default=default_params['meta_parameters']['gem_beta']) parser.add_argument('--algorithm', '-alg', type=str, default=default_params['agent']) parser.add_argument('--task', '-t', type=str, default=default_params['task']) parser.add_argument('--num_of_runs', '-nr', type=int, default=default_params['num_of_runs']) parser.add_argument('--num_steps', '-ns', type=int, default=default_params['num_steps']) parser.add_argument('--sub_sample', '-ss', type=int, default=default_params['sub_sample']) parser.add_argument('--environment', '-e', type=str, default=default_params['environment']) parser.add_argument('--save_path', '-sp', type=str, default='-') parser.add_argument('--rerun', '-rrn', type=bool, default=False) parser.add_argument('--render', '-rndr', type=bool, default=False) parser.add_argument('--save_value_function', '-svf', type=bool, default=default_params['save_value_function']) args = parser.parse_args() if args.save_path == '-': args.save_path = os.path.join(os.getcwd(), 'Results', default_params['exp'], args.algorithm) learn(config=Configuration(vars(args)))