
A Variance Minimization Approach to Off-policy Temporal-Difference Learning

Anonymous submission

Abstract

In this paper, we introduce the concept of improving the per-
formance of parametric Temporal-Difference (TD) learning
algorithms by the Variance Minimization (VM) parameter, ω,
which is dynamically updated at each time step. Specifically,
we incorporate the VM parameter into off-policy linear algo-
rithms such as TDC and ETD, resulting in the Variance Min-
imization TDC (VMTDC) algorithm and the Variance Min-
imization ETD (VMETD) algorithm. In the two-state coun-
terexample, we analyze the convergence speed of these al-
gorithms by calculating the minimum eigenvalue of the key
matrices and find that the VMTDC algorithm converges faster
than TDC, while VMETD is more stable in convergence than
ETD through the experiment.In controlled experiments, the
VM algorithms demonstrate superior performance.

Introduction
Reinforcement learning can be mainly divided into two
categories: value-based reinforcement learning and policy
gradient-based reinforcement learning. This paper focuses
on temporal difference learning based on linear approxi-
mated valued functions. Its research is usually divided into
two steps: the first step is to establish the convergence of the
algorithm, and the second step is to accelerate the algorithm.

In terms of stability, Sutton (1988) established the conver-
gence of on-policy TD(0), and Tsitsiklis and Van Roy (1997)
established the convergence of on-policy TD(λ). However,
“The deadly triad” consisting of off-policy learning, boot-
strapping, and function approximation makes the stability
a difficult problem (Sutton and Barto 2018). To solve this
problem, convergent off-policy temporal difference learning
algorithms are proposed, e.g., BR (Baird et al. 1995), GTD
(Sutton, Maei, and Szepesvári 2008), GTD2 and TDC (Sut-
ton et al. 2009), ETD (Sutton, Mahmood, and White 2016),
and MRetrace (Chen et al. 2023).

In terms of acceleration, Hackman (2012) proposed Hy-
brid TD algorithm with on-policy matrix. Liu et al. (2015,
2016, 2018) proposed true stochastic algorithms, i.e., GTD-
MP and GTD2-MP, from a convex-concave saddle-point for-
mulation. Second-order methods are used to accelerate TD
learning, e.g., Quasi Newton TD (Givchi and Palhang 2015)
and accelerated TD (ATD) (Pan, White, and White 2017).
Hallak et al. (2016) introduced an new parameter to reduce
variance for ETD. Zhang and Whiteson (2022) proposed

truncated ETD with a lower variance. Variance Reduced
TD with direct variance reduction technique (Johnson and
Zhang 2013) is proposed by (Korda and La 2015) and anal-
ysed by (Xu et al. 2019). How to further improve the conver-
gence rates of reinforcement learning algorithms is currently
still an open problem.

Algorithm stability is prominently reflected in the
changes to the objective function, transitioning from mean
squared errors (MSE) (Sutton and Barto 2018) to mean
squared bellman errors (MSBE) (Baird et al. 1995), then to
norm of the expected TD update (Sutton et al. 2009), and
further to mean squared projected Bellman errors (MSPBE)
(Sutton et al. 2009). On the other hand, algorithm accelera-
tion is more centered around optimizing the iterative update
formula of the algorithm itself without altering the objec-
tive function, thereby speeding up the convergence rate of
the algorithm. The emergence of new optimization objec-
tive functions often leads to the development of novel algo-
rithms. The introduction of new algorithms, in turn, tends
to inspire researchers to explore methods for accelerating
algorithms, leading to the iterative creation of increasingly
superior algorithms.

The kernel loss function can be optimized using stan-
dard gradient-based methods, addressing the issue of dou-
ble sampling in residual gradient algorithm (Feng, Li, and
Liu 2019). It ensures convergence in both on-policy and
off-policy scenarios. The logistic bellman error is convex
and smooth in the action-value function parameters, with
bounded gradients (Bas-Serrano et al. 2021). In contrast,
the squared Bellman error is not convex in the action-value
function parameters, and RL algorithms based on recursive
optimization using it are known to be unstable.

It is necessary to propose a new objective function, but
the mentioned objective functions above are all some form
of error. Is minimizing error the only option for value-based
reinforcement learning?

For policy evaluation experiments, differences in ob-
jective functions may result in inconsistent fixed points.
This inconsistency makes it difficult to uniformly compare
the superiority of algorithms derived from different objec-
tive functions. However, for control experiments, since the
choice of actions depends on the relative values of the Q
values rather than their absolute values, the presence of so-
lution bias is acceptable.

Based on this observation, we propose alternate objective
functions instead of minimizing errors. We minimize Vari-
ance of Projected Bellman Error (VPBE) and derive Vari-
ance Minimization (VM) algorithms. These algorithms pre-
serve the invariance of the optimal policy in the control en-
vironments, but significantly reduce the variance of gradient
estimation, and thus hastening convergence.

The contributions of this paper are as follows: (1) Intro-
duction of novel objective functions based on the invariance
of the optimal policy. (2) Propose two off-policy variance
minimization algorithms. (3) Proof of their convergence. (5)
Experiments demonstrating the faster convergence speed of
the proposed algorithms.

Background
Markov Decision Process
Reinforcement learning agent interacts with environment,
observes state, takes sequential decision makings to influ-
ence environment, and obtains rewards. Consider an infinite-
horizon discounted Markov Decision Process (MDP), de-
fined by a tuple ⟨S,A,R, P, γ⟩, where S = {1, 2, . . . , N}
is a finite set of states of the environment; A is a finite set
of actions of the agent; R : S × A × S → R is a bounded
deterministic reward function; P : S × A × S → [0, 1] is
the transition probability distribution; and γ ∈ (0, 1) is the
discount factor (Sutton and Barto 2018). Due to the require-
ments of online learning, value iteration based on sampling
is considered in this paper. In each sampling, an experience
(or transition) ⟨s, a, s′, r⟩ is obtained.

A policy is a mapping π : S × A → [0, 1]. The goal of
the agent is to find an optimal policy π∗ to maximize the
expectation of a discounted cumulative rewards in a long
period. State value function V π(s) for a stationary policy
π is defined as:

V π(s) = Eπ[

∞∑
k=0

γkRk|s0 = s].

Linear value function for state s ∈ S is defined as:

Vθ(s) := θ⊤ϕ(s) =

m∑
i=1

θiϕi(s), (1)

where θ := (θ1, θ2, . . . , θm)⊤ ∈ Rm is a parameter vector,
ϕ := (ϕ1, ϕ2, . . . , ϕm)⊤ ∈ Rm is a feature function defined
on state space S, and m is the feature size.

Tabular temporal difference (TD) learning (Sutton and
Barto 2018) has been successfully applied to small-scale
problems. To deal with the well-known curse of dimension-
ality of large scale MDPs, value function is usually approx-
imated by a linear model (the focus of this paper), kernel
methods, decision trees, or neural networks, etc.

On-policy and Off-policy
On-policy and off-policy algorithms are currently hot top-
ics in research. Off-policy algorithms, in particular, present
greater challenges due to the difficulty in ensuring their con-
vergence, making them more complex to study. The main
difference between the two lies in the fact that in on-policy

algorithms, the behavior policy µ and the target policy π are
the same during the learning process. The algorithm directly
generates data from the current policy and optimizes it. In
off-policy algorithms, however, the behavior policy and the
target policy are different. The algorithm uses data gener-
ated from the behavior policy to optimize the target policy,
which leads to higher sample efficiency and complex stabil-
ity issues.

Taking the TD(0) algorithm as an example can help under-
stand the different performances of on-policy and off-policy:

In the on-policy TD(0) algorithm, the behavior policy and
the target policy are the same. The algorithm uses the data
generated by the current policy to update its value estimates.
Since the behavior policy and the target policy are consis-
tent, the convergence of TD(0) is more assured. In each step
of the update, the algorithm is based on the actual behavior
of the current policy, which gradually leads the value func-
tion estimate to converge to the true value of the target pol-
icy.

The on-policy TD(0) update formula is

θk+1 ← θk + αkδkϕk,

where δk = rk+1 + γθ⊤
k ϕk+1 − θ⊤

k ϕk and the key matrix
Aon of on-policy TD(0) is

Aon = Φ⊤Dπ(I− γPπ)Φ,

where Φ is the N × n matrix with the ϕ(s) as its rows, and
Dπ is the N × N diagonal matrix with dπ on its diagonal.
dπ is a vector, each component representing the steady-state
distribution under π. Pπ denote the N ×N matrix of transi-
tion probabilities under π. And P⊤

π dπ = dπ .
An Φ⊤XΦ matrix of this form will be positive defi-

nite whenever the matrix X is positive definite. Any matrix
X is positive definite if and only if the symmetric matrix
S = X + X⊤ is positive definite. Any symmetric real ma-
trix S is positive definite if the absolute values of its diag-
onal entries are greater than the sum of the absolute values
of the corresponding off-diagonal entries(Sutton, Mahmood,
and White 2016).

All components of the matrix Dπ(I − γPπ) are positive.
The row sums of Dπ(I − γPπ) are positive. And The row
sums of Dπ(I− γPπ) are

1⊤Dπ(I− γPπ) = d⊤
π (I− γPπ)

= d⊤
π − γd⊤

π Pπ

= d⊤
π − γd⊤

π

= (1− γ)d⊤
π ,

all components of which are positive. Thus, the key matrix
and its Aon matrix are positive definite, and on-policy TD(0)
is stable

The off-policy TD(0) update formula is

θk+1 ← θk + αkρkδkϕk,

where ρk = π(Ak|Sk)
µ(Ak|Sk)

, called importance sampling ratio, and
the key matrix Aoff of off-policy TD(0) is

Aoff = Φ⊤Dµ(I− γPπ)Φ.

where Dµ is the N×N diagonal matrix with dµ on its diago-
nal. dµ is a vector, each component representing the steady-
state distribution under µ

If the key matrix A in the algorithm is positive definite,
then the algorithm is stable and converges. However, in the
off-policy TD(0) algorithm, it cannot be guaranteed that A
is a positive definite matrix. In the 2-state counterexample,
Aoff = −0.2, which means that off-policy TD(0) cannot sta-
bly converge.

TDC and ETD are two well-known off-policy algorithms.
The former is an off-policy algorithm derived from the
objective function Mean Squared Projected Bellman error
(MSPBE), while the latter employs a technique to transform
the key matrix A in the original off-policy TD(0) from non-
positive definite to positive definite, thereby ensuring the al-
gorithm’s convergence under off-policy conditions.

The MSPBE with importance sampling is

MSPBE(θ) = ||Vθ −ΠTπVθ||2µ
= ||Π(Vθ − TπVθ)||2µ
= E[ρδϕ]⊤E[ϕϕ⊤]−1E[ρδϕ],

where Vθ is viewed as vectors with one element for each
state, the norm ||v||2µ =

∑
s µ(s)v

2(s), Tπ , simplified to
T in the following text, is Bellman operator and Π =
Φ(Φ⊤DΦ)−1Φ⊤D. The TDC update formula with impor-
tance sampling is

θk+1 ← θk + αkρk[δkϕk − γϕk+1(ϕ
⊤
k uk)],

uk+1 ← uk + ζk[ρkδk − ϕ⊤
k uk]ϕk.

The key matrix ATDC = A⊤
offC

−1Aoff, where C = E[ϕϕ⊤].
In the 2-state counterexample, ATDC = 0.016, which means
that TDC can stably converge.

The ETD update formula is

Fk ← γρk−1Fk−1 + 1, (2)

θk+1 ← θk + αkFkρkδkϕk,

where Ft is a scalar variable and F0 = 1. The key matrix
AETD = Φ⊤F(I − γPπ)Φ, where F is a diagonal matrix
with diagonal elements f(s)=̇dµ(s) limt→∞ Eµ[Fk|Sk =
s], which we assume exists. The vector f ∈ RN with com-
ponents [f]s=̇f(s) can be written as

f = dµ + γP⊤
π dµ + (γP⊤

π)
2dµ + . . .

= (I− γP⊤
π)

−1dµ.

. The row sums of F(I− γPπ) are

1⊤F(I− γPπ) = f⊤(I− γPπ)
= d⊤

µ (I− γPπ)
−1(I− γPπ)

= d⊤
µ ,

and in the 2-state counterexample, AETD = 3.4, which
means that ETD can stably converge.

The convergence rate of the algorithm is related to the
matrix A. The larger the minimum eigenvalue of A, the
faster the convergence rate. In the 2-state case, the minimum
eigenvalue of the matrix A in ETD is the largest, so it con-
verges the fastest. Based on this theorem, can we derive an
algorithm with a larger minimum eigenvalue for matrix A.

Algorithm 1: VMTDC algorithm with linear function ap-
proximation in the off-policy setting

Input: θ0, u0, ω0, γ, learning rate αt, ζt and βt, behavior
policy µ and target policy π
repeat

For any episode, initialize θ0 arbitrarily, u0 and ω0 to
0, γ ∈ (0, 1], and αt, ζt and βt are constant.
for t = 0 to T − 1 do

Take At from St according to µ, and arrive at St+1

Observe sample (St,Rt+1,St+1) at time step t (with
their corresponding state feature vectors)
δt = Rt+1 + γθ⊤

t ϕt+1 − θ⊤
t ϕt

ρt ← π(At|St)
µ(At|St)

θt+1 ← θt + αt[(ρtδt − ωt)ϕt − γρtϕt+1(ϕ
⊤
t ut)]

ut+1 ← ut + ζt[(ρtδt − ωt)− ϕ⊤
t ut]ϕt

ωt+1 ← ωt + βt(ρtδt − ωt)
St = St+1

end for
until terminal episode

Variance Minimization Algorithms
To derive an algorithm with a larger minimum eigenvalue
for matrix A, it is necessary to propose new objective func-
tions. The mentioned objective functions in the Introduction
are all forms of error. Is minimizing error the only option for
value-based reinforcement learning? Based on this observa-
tion, we propose alternative objective functions instead of
minimizing errors. We minimize the Variance of Projected
Bellman Error (VPBE) and derive the VMTDC algorithm.
This idea is then innovatively applied to ETD, resulting in
the VMETD algorithm.

Variance Minimization TDC Learning: VMTDC
For off-policy learning, we propose a new objective func-
tion, called Variance of Projected Bellman error (VPBE),
and the corresponding algorithm is called VMTDC.

VPBE(θ) = E[(δ − E[δ])ϕ]⊤E[ϕϕ⊤]−1 (3)
E[(δ − E[δ])ϕ]
= (Φ⊤D(Wθ + TVθ − Vθ))

⊤(Φ⊤DΦ)−1

Φ⊤D(Wθ + TVθ − Vθ)

= (Wθ + TVθ − Vθ)
⊤D⊤Φ(Φ⊤DΦ)−1

Φ⊤D(Wθ + TVθ − Vθ)

= (Wθ + TVθ − Vθ)
⊤Π⊤DΠ

(Wθ + TVθ − Vθ)

= (Π(Vθ − TVθ −Wθ))
⊤D

(Π(Vθ − TVθ −Wθ))

= ||Π(Vθ − TVθ −Wθ)||2µ
= ||Π(Vθ − TVθ)−ΠWθ||2µ
= E[(δ − ω)ϕ]⊤E[ϕϕ⊤]−1E[(δ − ω)ϕ] (4)

Algorithm 2: VMETD algorithm with linear function ap-
proximation in the off-policy setting

Input: θ0, F0, ω0, γ, learning rate αt, ζt and βt, behavior
policy µ and target policy π
repeat

For any episode, initialize θ0 arbitrarily, F0 to 1 and ω0

to 0, γ ∈ (0, 1], and αt, ζt and βt are constant.
for t = 0 to T − 1 do

Take At from St according to µ, and arrive at St+1

Observe sample (St,Rt+1,St+1) at time step t (with
their corresponding state feature vectors)
δt = Rt+1 + γθ⊤

t ϕt+1 − θ⊤
t ϕt

ρt ← π(At|St)
µ(At|St)

Ft ← γρtFt−1 + 1
θt+1 ← θt + αt(Ftρtδt − ωt)ϕt

ωt+1 ← ωt + βt(Ftρtδt − ωt)
St = St+1

end for
until terminal episode

where Wθ is viewed as vectors with every element being
equal to ||Vθ − TVθ||2µ and ω is used to approximate E[δ],
i.e., ω .

= E[δ].
The gradient of the (3) with respect to θ is

− 1
2∇VPBE(θ) = −E

[(
(γϕ′ − ϕ)− E[(γϕ′ − ϕ)]

)
ϕ⊤

]
E[ϕϕ⊤]−1E[(δ − E[δ])ϕ]

= E
[(

(ϕ− γϕ′)− E[(ϕ− γϕ′)]
)
ϕ⊤

]
E[ϕϕ⊤]−1

E
[(

r + γϕ′⊤θ − ϕ⊤θ

−E[r + γϕ′⊤θ − ϕ⊤θ]
)
ϕ
]

= A⊤C−1(−Aθ + b)

where

A = E
[(

(ϕ− γϕ′)− E[(ϕ− γϕ′)]
)
ϕ⊤

]
= E[(ϕ− γϕ′)ϕ⊤]− E[ϕ− γϕ′]E[ϕ⊤]
= Cov(ϕ,ϕ− γϕ′),

C = E[ϕϕ⊤],

b = E(r − E[r])ϕ
= E[rϕ]− E[r]E[ϕ]
= Cov(r,ϕ),

where Cov(·, ·) is a covariance operator.
In the process of computing the gradient of the (4) with

respect to θ, ω is treated as a constant. So, the derivation
process of the VMTDC algorithm is the same as that of the
TDC algorithm, the only difference is that the original δ is
replaced by δ − ω. Therefore, we can easily get the updated
formula of VMTDC, as follows:

θk+1 ← θk + αk[(δk − ωk)ϕk − γϕk+1(ϕ
⊤
k uk)], (5)

uk+1 ← uk + ζk[δk − ωk − ϕ⊤
k uk]ϕk, (6)

and
ωk+1 ← ωk + βk(δk − ωk), (7)

The VMTDC algorithm (5) is derived to work with
a given set of sub-samples—in the form of triples
(Sk, Rk, S

′
k) that match transitions from both the behavior

and target policies. What if we wanted to use all the data?
The data is generated according to the behavior policy πb,
while our objective is to learn about the target policy π.
We should use importance-sampling. The VPBE with im-
portance sampling is:

VPBE(θ) = E[(ρδ − E[ρδ])ϕ]⊤E[ϕϕ⊤]−1

E[(ρδ − E[ρδ])ϕ], (8)

Following the linear VMTDC derivation, we get the follow-
ing algorithm (linear VMTDC algorithm based on impor-
tance weighting scenario):
θk+1 ← θk+αk[(ρkδk−ωk)ϕk−γρkϕk+1(ϕ

⊤
k uk)], (9)

uk+1 ← uk + ζk[(ρkδk − ωk)− ϕ⊤
k uk]ϕk, (10)

and
ωk+1 ← ωk + βk(ρkδk − ωk), (11)

The gradient of the (8) with respect to θ is

− 1
2∇VPBE(θ) = E

[(
ρ(ϕ− γϕ′)− E[ρ(ϕ− γϕ′)]

)
ϕ⊤

]
E[ϕϕ⊤]−1

E
[(

ρ(r + γϕ′⊤θ − ϕ⊤θ)

−E[ρ(r + γϕ′⊤θ − ϕ⊤θ)]
)
ϕ
]

= E[ρ(ϕ− γϕ′)ϕ⊤]− E[ρ(ϕ− γϕ′)]E[ϕ⊤]
E[ϕϕ⊤]−1

E
[(

ρ(r + γϕ′⊤θ − ϕ⊤θ)

−E[ρ(r + γϕ′⊤θ − ϕ⊤θ)]
)
ϕ
]

= A⊤C−1(−Aθ + b),
where A = Φ⊤(Dµ − dµd⊤

µ)(I − γPπ)Φ, b = Φ⊤(Dµ −
dµd⊤

µ)rπ and rπ is viewed as vectors. In the 2-state coun-
terexample, AVMTDC = 0.025, meaning that VMTDC can
stably converge and converges faster than TDC.

Variance Minimization ETD Learning: VMETD
Based on the off-policy TD algorithm, a scalar, F , is in-
troduced to obtain the ETD algorithm, which ensures con-
vergence under off-policy conditions. This paper further in-
troduces a scalar, ω, based on the ETD algorithm to obtain
VMETD. VMETD by the following update:

θk+1 ← θk + αk(Fkρkδk − ωk)ϕk, (12)
ωk+1 ← ωk + βk(Fkρkδk − ωk), (13)

where ω is used to estimate E[Fρδ], i.e., ω .
= E[Fρδ].

(12) can be rewritten as
θk+1 ← θk + αk(Fkρkδk − ωk)ϕk − αkωk+1ϕk

= θk + αk(Fkρkδk − Eµ[Fkρkδk|θk])ϕk

= θk + αkFkρk(Rk+1 + γθ⊤
k ϕk+1 − θ⊤

k ϕk)ϕk

−αkEµ[Fkρkδk]ϕk

= θk + αk{(FkρkRk+1 − Eµ[FkρkRk+1])ϕk︸ ︷︷ ︸
bVMETD,k

− (Fkρkϕk(ϕk − γϕk+1)
⊤ − ϕkEµ[Fkρk(ϕk − γϕk+1)]

⊤)︸ ︷︷ ︸
AVMETD,k

θk}.

Table 1: Minimum eigenvalues of various algorithms in the 2-state counterexample.

ALGORITHM OFF-POLICY TD TDC ETD VMTDC VMETD

MINIMUM EIGENVALUES −0.2 0.016 3.4 0.025 1.15

Therefore,

AVMETD = limk→∞ E[AVMETD,k]
= limk→∞ Eµ[Fkρkϕk(ϕk − γϕk+1)

⊤]
− limk→∞ Eµ[ϕk]Eµ[Fkρk(ϕk − γϕk+1)]

⊤

= limk→∞ Eµ[ϕkFkρk(ϕk − γϕk+1)
⊤]

− limk→∞ Eµ[ϕk]Eµ[Fkρk(ϕk − γϕk+1)]
⊤

= limk→∞ Eµ[ϕkFkρk(ϕk − γϕk+1)
⊤]

− limk→∞ Eµ[ϕk] limk→∞ Eµ[Fkρk(ϕk − γϕk+1)]
⊤

=
∑

s dµ(s) limk→∞ Eµ[Fk|Sk = s]Eµ[ρkϕk(ϕk − γϕk+1)
⊤|Sk = s]

−
∑

s dµ(s)ϕ(s)
∑

s dµ(s) limk→∞ Eµ[Fk|Sk = s]
Eµ[ρk(ϕk − γϕk+1)

⊤|Sk = s]
=

∑
s f(s)Eπ[ϕk(ϕk − γϕk+1)

⊤|Sk = s]
−
∑

s dµ(s)ϕ(s)
∑

s f(s)Eπ[(ϕk − γϕk+1)
⊤|Sk = s]

=
∑

s f(s)ϕ(s)(ϕ(s)− γ
∑

s′ [Pπ]ss′ϕ(s
′))⊤

−
∑

s dµ(s)ϕ(s) ∗
∑

s f(s)(ϕ(s)− γ
∑

s′ [Pπ]ss′ϕ(s
′))⊤

= Φ⊤F(I− γPπ)Φ−Φ⊤dµf⊤(I− γPµ)Φ

= Φ⊤(F− dµf⊤)(I− γPπ)Φ

= Φ⊤(F(I− γPπ)− dµf⊤(I− γPπ))Φ
= Φ⊤(F(I− γPπ)− dµd⊤

µ)Φ,

bVMETD = limk→∞ E[bVMETD,k]
= limk→∞ Eµ[FkρkRk+1ϕk]
− limk→∞ Eµ[ϕk]Eµ[FkρkRk+1]

= limk→∞ Eµ[ϕkFkρkRk+1]
− limk→∞ Eµ[ϕk]Eµ[ϕk]Eµ[FkρkRk+1]

= limk→∞ Eµ[ϕkFkρkRk+1]
− limk→∞ Eµ[ϕk] limk→∞ Eµ[FkρkRk+1]

=
∑

s f(s)ϕ(s)rπ −
∑

s dµ(s)ϕ(s) ∗
∑

s f(s)rπ
= Φ⊤(F− dµf⊤)rπ.

Therefore, in the 2-state counterexample, AVMETD = 1.15,
meaning that VMETD can stably converge and converges
slower than ETD. However, subsequent experiments showed
that the VMETD algorithm converges more smoothly and
performs better in controlled experiments.

Theoretical Analysis
The purpose of this section is to establish the stabilities of
the VMTDC algorithm and the VMETD algorithm.
Theorem 1. (Convergence of VMTDC). In the case of off-
policy learning, consider the iterations (7), (6) and (5) of
VMTDC. Let the step-size sequences αk, ζk and βk, k ≥ 0
satisfy in this case αk, ζk, βk > 0, for all k,

∑∞
k=0 αk =∑∞

k=0 βk =
∑∞

k=0 ζk = ∞,
∑∞

k=0 α
2
k < ∞,

∑∞
k=0 ζ

2
k <

∞,
∑∞

k=0 β
2
k < ∞, and αk = o(ζk), ζk = o(βk). As-

sume that (ϕk, rk,ϕ
′
k) is an i.i.d. sequence with uniformly

bounded second moments. Let A = Cov(ϕ,ϕ − γϕ′),
b = Cov(r,ϕ), and C = E[ϕϕ⊤]. Assume that A and C are
non-singular matrices. Then the parameter vector θk con-
verges with probability one to A−1b.

Proof. The proof is similar to that given by (Sutton et al.
2009) for TDC, but it is based on multi-time-scale stochastic
approximation.

First, note that recursion (5) and (6) can be rewritten as,
respectively,

θk+1 ← θk + ζkx(k),

uk+1 ← uk + βky(k),

where

x(k) =
αk

ζk
[(δk − ωk)ϕk − γϕ′

k(ϕ
⊤
k uk)],

y(k) =
ζk
βk

[δk − ωk − ϕ⊤
k uk]ϕk.

Recursion (5) can also be rewritten as

θk+1 ← θk + βkz(k),

where

z(k) =
αk

βk
[(δk − ωk)ϕk − γϕ′

k(ϕ
⊤
k uk)],

Due to the settings of step-size schedule αk = o(ζk),
ζk = o(βk), x(k) → 0, y(k) → 0, z(k) → 0 almost surely
as k → 0. That is that the increments in iteration (7) are
uniformly larger than those in (6) and the increments in iter-
ation (6) are uniformly larger than those in (5), thus (7) is the
fastest recursion, (6) is the second fast recursion and (5) is
the slower recursion. Along the fastest time scale, iterations
of (5), (6) and (7) are associated to ODEs system as follows:

θ̇(t) = 0, (14)

u̇(t) = 0, (15)
ω̇(t) = E[δt|u(t), θ(t)]− ω(t). (16)

Based on the ODE (14) and (15), both θ(t) ≡ θ and
u(t) ≡ u when viewed from the fastest timescale. By the
Hirsch lemma (Hirsch 1989), it follows that ||θk − θ|| → 0
a.s. as k → ∞ for some θ that depends on the initial condi-
tion θ0 of recursion (5) and ||uk−u|| → 0 a.s. as k →∞ for
some u that depends on the initial condition u0 of recursion
(6). Thus, the ODE pair (14)-(refomegavmtdcFastest) can be
written as

ω̇(t) = E[δt|u, θ]− ω(t). (17)
Consider the function h(ω) = E[δ|θ, u] − ω, i.e., the

driving vector field of the ODE (17). It is easy to find that
the function h is Lipschitz with coefficient −1. Let h∞(·)
be the function defined by h∞(ω) = limr→∞

h(rω)
r . Then

h∞(ω) = −ω, is well-defined. For (17), ω∗ = E[δ|θ, u] is
the unique globally asymptotically stable equilibrium. For
the ODE

ω̇(t) = h∞(ω(t)) = −ω(t), (18)

apply V⃗ (ω) = (−ω)⊤(−ω)/2 as its associated strict Lia-
punov function. Then, the origin of (18) is a globally asymp-
totically stable equilibrium.

Consider now the recursion (7). Let Mk+1 = (δk −
ωk) − E[(δk − ωk)|F(k)], where F(k) = σ(ωl, ul, θl, l ≤
k;ϕs, ϕ

′
s, rs, s < k), k ≥ 1 are the sigma fields generated

by ω0, u0, θ0, ωl+1, ul+1, θl+1, ϕl, ϕ
′
l, 0 ≤ l < k. It is easy

to verify that Mk+1, k ≥ 0 are integrable random variables
that satisfy E[Mk+1|F(k)] = 0, ∀k ≥ 0. Because ϕk, rk,
and ϕ′

k have uniformly bounded second moments, it can be
seen that for some constant c1 > 0, ∀k ≥ 0,

E[||Mk+1||2|F(k)] ≤ c1(1 + ||ωk||2 + ||uk||2 + ||θk||2).
Now Assumptions (A1) and (A2) of (Borkar and Meyn

2000) are verified. Furthermore, Assumptions (TS) of
(Borkar and Meyn 2000) is satisfied by our conditions on
the step-size sequences αk,ζk, βk. Thus, by Theorem 2.2 of
(Borkar and Meyn 2000) we obtain that ||ωk − ω∗|| → 0
almost surely as k →∞.

Recursion (6) is considered the second timescale. Recur-
sion (5) is considered the slower timescale. For the conver-
gence properties of u and θ, please refer to the appendix.

Theorem 2. (Convergence of VMETD). In the case of off-
policy learning, consider the iterations (2), (13) and (12)
of VMETD. Let the step-size sequences αk and βk, k ≥ 0
satisfy in this case αk, βk > 0, for all k,

∑∞
k=0 αk =∑∞

k=0 βk = ∞,
∑∞

k=0 α
2
k < ∞,

∑∞
k=0 β

2
k < ∞, and

αk = o(βk). Assume that (ϕk, rk,ϕ
′
k) is an i.i.d. sequence

with uniformly bounded second moments, where ϕk and ϕ′
k

are sampled from the same Markov chain. Let AVMETD =
Φ⊤(F(I − γPπ) − dµd⊤µ)Φ, bVMETD = Φ⊤(F − dµf⊤)rπ .
Assume that matrix A is non-singular. Then the parameter
vector θk converges with probability one to A−1

VMETDbVMETD.

Proof. The proof of VMETD’s convergence is also based
on Borkar’s Theorem for general stochastic approximation
recursions with two time scales (Borkar 1997).

Recursion (13) is considered the faster timescale. For the
convergence properties of ω, please refer to the appendix.
Recursion (12) is considered the slower timescale. If the key
matrix AVMETD is positive definite, then θ converges.

(F(I− γPπ)− dµd⊤
µ)1 = F(I− γPπ)1− dµd⊤

µ 1

= F(1− γPπ1)− dµd⊤
µ 1

= (1− γ)F1− dµd⊤
µ 1

= (1− γ)f− dµd⊤
µ 1

= (1− γ)f− dµ

= (1− γ)(I− γP⊤
π)

−1dµ − dµ

= (1− γ)[(I− γP⊤
π)

−1 − I]dµ

= (1− γ)[

∞∑
t=0

(γP⊤
π)

t − I]dµ

= (1− γ)[

∞∑
t=1

(γP⊤
π)

t]dµ > 0

(19)

Table 2: Comparison of action selection with and without
constant bias in Q values.

ACTION Q VALUE Q VALUE WITH BIAS

Q(s, a0) 1 5
Q(s, a1) 2 6
Q(s, a2) 3 7
Q(s, a3) 4 8
argmina Q(s, a) a3 a3

1⊤(F(I− γPπ)− dµd⊤
µ) = 1⊤F(I− γPπ)− 1⊤dµd⊤

µ

= d⊤
µ − 1⊤dµd⊤

µ

= d⊤
µ − d⊤

µ

= 0
(20)

(19) and (20) show that the matrix F(I − γPπ) − dµd⊤
µ of

diagonal entries are positive and its off-diagonal entries are
negative. So its each row sum plus the corresponding column
sum is positive. So AVMETD is positive definite.

Optimal Policy Invariance
This section prove the optimal policy invariance of VMTDC
and VMETD in control experiments, laying the groundwork
for subsequent experiments.

As shown in Table 2, although there is a bias between the
true value and the predicted value, action a3 is still chosen
under the greedy-policy. On the contrary, supervised learn-
ing is usually used to predict temperature, humidity, mor-
bidity, etc. If the bias is too large, the consequences could be
serious.

In addition, reward shaping can significantly speed up the
learning by adding a shaping reward F (s, s′) to the original
reward r, where F (s, s′) is the general form of any state-
based shaping reward. Static potential-based reward shaping
(Static PBRS) maintains the policy invariance if the shaping
reward follows from F (s, s′) = γf(s′)− f(s) (Ng, Harada,
and Russell 1999).

This means that we can make changes to the TD error
δ = r+γθ⊤ϕ′−θ⊤ϕ while still ensuring the invariance of
the optimal policy,

δ − ω = r + γθ⊤ϕ′ − θ⊤ϕ− ω,

where ω is a constant, acting as a static PBRS. This also
means that algorithms with the optimization goal of mini-
mizing errors, after introducing reward shaping, may result
in larger or smaller bias. Fortunately, as discussed above,
bias is acceptable in reinforcement learning. However, the
problem is that selecting an appropriate ω requires expert
knowledge. This forces us to learn ω dynamically, i.e., ω =
ωt and dynamic PBRS can also maintain the policy invari-
ance if the shaping reward is F (s, t, s′, t′) = γf(s′, t′) −
f(s, t), where t is the time-step the agent reaches in state
s (Devlin and Kudenko 2012). However, this result requires

0 500 1000 1500 2000
steps

2

4

6

8

10

12

*

TDC
ETD
VMTDC
VMETD

(a) 2-state counterexample

0 500 1000 1500 2000
steps

5

10

15

20

25

*

TDC
ETD
VMTDC
VMETD

(b) 7-state counterexample

0 500 1000 1500
Training episodes

50

100

150

200

Av
er

ag
ed

 S
te

ps

GQ
EQ
VMGQ
VMEQ

(c) Maze

0 100 200 300 400 500
Training episodes

0

20

40

60

80

100

120

Av
er

ag
ed

 st
ep

s

GQ
EQ
VMGQ
VMEQ

(d) Cliff Walking

0 500 1000 1500
Training episodes

100

200

300

400

500

600

700

Av
er

ag
ed

 S
te

ps

GQ
EQ
VMGQ
VMEQ

(e) Mountain Car

0 500 1000 1500
Training episodes

100

200

300

400

500

Av
er

ag
e

ste
ps

GQ
EQ
VMGQ
VMEQ

(f) Acrobot

Figure 1: Learning curses of two evaluation environments and four contral environments.

the convergence guarantee of the dynamic potential function
f(s, t). If f(s, t) does not converge as the time-step t→∞,
the Q-values of dynamic PBRS are not guaranteed to con-
verge.

Let fωt(s) = ωt

γ−1 . Thus, Fωt(s, s
′) = γfωt(s

′) −
fωt

(s) = ωt is a dynamic PBRS. And if ω converges finally,
the dynamic potential function f(s, t) will converge. Bias is
the expected difference between the predicted value and the
true value. Therefore, under the premise of bootstrapping,
we first think of letting ω

.
= E[δ] or ω .

= E[Fρδ].

Experimental Studies
This section assesses algorithm performance through experi-
ments, which are divided into policy evaluation experiments
and control experiments. The control algorithms for TDC,
ETD, VMTDC, and VMETD are named GQ, EQ, VMGQ,
and VMEQ, respectively. The evaluation experimental en-
vironments are the 2-state and 7-state counterexample. The
control experimental environments are Maze, CliffWalking-
v0, MountainCar-v0, and Acrobot-v1. For specific experi-
mental parameters, please refer to the appendix.

For the evaluation experiment, the experimental results
align with our previous analysis. In the 2-state counterexam-
ple environment, the TDC algorithm has the smallest mini-
mum eigenvalue of the key matrix, resulting in the slowest
convergence speed. In contrast, the minimum eigenvalue of
VMTDC is larger, leading to faster convergence. Although
VMETD’s minimum eigenvalue is larger than ETD’s, caus-
ing VMETD to converge more slowly than ETD in the 2-
state counterexample, the standard deviation (shaded area)

of VMETD is smaller than that of ETD, indicating that
VMETD converges more smoothly. In the 7-state counterex-
ample environment, VMTDC converges faster than TDC
and both VMETD and ETD are diverge.

For the control experiments, the results for the maze and
cliff walking environments are similar: VMGQ outperforms
GQ, EQ outperforms VMGQ, and VMEQ performs the best.
In the mountain car and Acrobot experiments, VMGQ and
VMEQ show comparable performance, both outperforming
GQ and EQ. In summary, for control experiments, VM al-
gorithms outperform non-VM algorithms.

In summary, the performance of VMSarsa, VMQ, and
VMGQ(0) is better than that of other algorithms. In the
Cliff Walking environment, the performance of VMGQ(0) is
slightly better than that of VMSarsa and VMQ. In the other
three experimental environments, the performances of VM-
Sarsa, VMQ, and VMGQ(0) are close.

Conclusion and Future Work
Value-based reinforcement learning typically aims to min-
imize error as an optimization objective. As an alterna-
tion, this study proposes new objective functions: VBE and
VPBE, and derives many variance minimization algorithms,
including VMTD, VMTDC and VMETD. All algorithms
demonstrated superior performance in policy evaluation and
control experiments. Future work may include, but are not
limited to, (1) analysis of the convergence rate of VMTDC
and VMETD. (2) extensions of VBE and VPBE to multi-
step returns. (3) extensions to nonlinear approximations,
such as neural networks.

References
Baird, L.; et al. 1995. Residual algorithms: Reinforcement
learning with function approximation. In Proc. 12th Int.
Conf. Mach. Learn., 30–37.
Bas-Serrano, J.; Curi, S.; Krause, A.; and Neu, G. 2021. Lo-
gistic Q-Learning. In International Conference on Artificial
Intelligence and Statistics, 3610–3618.
Borkar, V. S. 1997. Stochastic approximation with two time
scales. Syst. & Control Letters, 29(5): 291–294.
Borkar, V. S.; and Meyn, S. P. 2000. The ODE method for
convergence of stochastic approximation and reinforcement
learning. SIAM J. Control Optim., 38(2): 447–469.
Chen, X.; Ma, X.; Li, Y.; Yang, G.; Yang, S.; and Gao, Y.
2023. Modified Retrace for Off-Policy Temporal Difference
Learning. In Uncertainty in Artificial Intelligence, 303–312.
PMLR.
Devlin, S.; and Kudenko, D. 2012. Dynamic potential-based
reward shaping. In Proc. 11th Int. Conf. Autonomous Agents
and Multiagent Systems, 433–440.
Feng, Y.; Li, L.; and Liu, Q. 2019. A kernel loss for solving
the Bellman equation. In Advances in Neural Information
Processing Systems, 15430–15441.
Givchi, A.; and Palhang, M. 2015. Quasi newton temporal
difference learning. In Asian Conference on Machine Learn-
ing, 159–172.
Hackman, L. 2012. Faster Gradient-TD Algorithms. Ph.D.
thesis, University of Alberta.
Hallak, A.; Tamar, A.; Munos, R.; and Mannor, S. 2016.
Generalized emphatic temporal difference learning: bias-
variance analysis. In Proceedings of the 30th AAAI Con-
ference on Artificial Intelligence, 1631–1637.
Hirsch, M. W. 1989. Convergent activation dynamics in con-
tinuous time networks. Neural Netw., 2(5): 331–349.
Johnson, R.; and Zhang, T. 2013. Accelerating stochastic
gradient descent using predictive variance reduction. In Ad-
vances in Neural Information Processing Systems, 315–323.
Korda, N.; and La, P. 2015. On TD (0) with function ap-
proximation: Concentration bounds and a centered variant
with exponential convergence. In International conference
on machine learning, 626–634. PMLR.
Liu, B.; Gemp, I.; Ghavamzadeh, M.; Liu, J.; Mahadevan,
S.; and Petrik, M. 2018. Proximal gradient temporal differ-
ence learning: Stable reinforcement learning with polyno-
mial sample complexity. Journal of Artificial Intelligence
Research, 63: 461–494.
Liu, B.; Liu, J.; Ghavamzadeh, M.; Mahadevan, S.; and
Petrik, M. 2015. Finite-sample analysis of proximal gra-
dient TD algorithms. In Proceedings of the 21st Conference
on Uncertainty in Artificial Intelligence, 504–513.
Liu, B.; Liu, J.; Ghavamzadeh, M.; Mahadevan, S.; and
Petrik, M. 2016. Proximal Gradient Temporal Difference
Learning Algorithms. In Proceedings of the International
Joint Conference on Artificial Intelligence, 4195–4199.
Ng, A. Y.; Harada, D.; and Russell, S. 1999. Policy invari-
ance under reward transformations: Theory and application

to reward shaping. In Proc. 16th Int. Conf. Mach. Learn.,
278–287.
Pan, Y.; White, A.; and White, M. 2017. Accelerated gradi-
ent temporal difference learning. In Proceedings of the 21st
AAAI Conference on Artificial Intelligence, 2464–2470.
Sutton, R.; Maei, H.; Precup, D.; Bhatnagar, S.; Silver, D.;
Szepesvári, C.; and Wiewiora, E. 2009. Fast gradient-
descent methods for temporal-difference learning with lin-
ear function approximation. In Proc. 26th Int. Conf. Mach.
Learn., 993–1000.
Sutton, R. S. 1988. Learning to predict by the methods of
temporal differences. Machine learning, 3(1): 9–44.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement Learn-
ing: An Introduction. The MIT Press, second edition.
Sutton, R. S.; Maei, H. R.; and Szepesvári, C. 2008. A
Convergent O(n) Temporal-difference Algorithm for Off-
policy Learning with Linear Function Approximation. In
Advances in Neural Information Processing Systems, 1609–
1616. Cambridge, MA: MIT Press.
Sutton, R. S.; Mahmood, A. R.; and White, M. 2016. An
emphatic approach to the problem of off-policy temporal-
difference learning. The Journal of Machine Learning Re-
search, 17(1): 2603–2631.
Tsitsiklis, J. N.; and Van Roy, B. 1997. Analysis of
temporal-diffference learning with function approximation.
In Advances in Neural Information Processing Systems,
1075–1081.
Xu, T.; Wang, Z.; Zhou, Y.; and Liang, Y. 2019. Reanaly-
sis of Variance Reduced Temporal Difference Learning. In
International Conference on Learning Representations.
Zhang, S.; and Whiteson, S. 2022. Truncated emphatic tem-
poral difference methods for prediction and control. The
Journal of Machine Learning Research, 23(1): 6859–6917.

