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Abstract

Under certain conditions, the larger the smallest eigenvalue
of the key matrix of an algorithm, the faster the algorithm
converges. By observation, most current objective functions
aim to minimize error. Therefore, in this paper, we propose
two new objective functions and derive three Variance Min-
imization (VM) algorithms, including VMTD, VMTDC and
VMETD. A scalar parameter, w, is introduced, to improve the
performance of parametric Temporal-Difference (TD) learn-
ing algorithms. In the policy evaluation experiment, two-
state, we analyze the convergence speed of these algorithms
by calculating the minimum eigenvalue of the key matrices
both on-policy and off-policy.In controlled experiments, the
VM algorithms demonstrate superior performance.

Introduction

Reinforcement learning can be mainly divided into two
categories: value-based reinforcement learning and policy
gradient-based reinforcement learning. This paper focuses
on temporal difference learning based on linear approxi-
mated valued functions. Its research is usually divided into
two steps: the first step is to establish the convergence of the
algorithm, and the second step is to accelerate the algorithm.

In terms of stability, Sutton (1988) established the conver-
gence of on-policy TD(0), and Tsitsiklis and Van Roy (1997)
established the convergence of on-policy TD(\). However,
“The deadly triad” consisting of off-policy learning, boot-
strapping, and function approximation makes the stability
a difficult problem (Sutton and Barto 2018). To solve this
problem, convergent off-policy temporal difference learning
algorithms are proposed, e.g., BR (Baird et al. 1995), GTD
(Sutton, Maei, and Szepesvari 2008), GTD2 and TDC (Sut-
ton et al. 2009), ETD (Sutton, Mahmood, and White 2016),
and MRetrace (Chen et al. 2023).

In terms of acceleration, Hackman (2012) proposed Hy-
brid TD algorithm with on-policy matrix. Liu et al. (2015,
2016, 2018) proposed true stochastic algorithms, i.e., GTD-
MP and GTD2-MP, from a convex-concave saddle-point for-
mulation. Second-order methods are used to accelerate TD
learning, e.g., Quasi Newton TD (Givchi and Palhang 2015)
and accelerated TD (ATD) (Pan, White, and White 2017).
Hallak et al. (2016) introduced an new parameter to reduce
variance for ETD. Zhang and Whiteson (2022) proposed
truncated ETD with a lower variance. Variance Reduced

TD with direct variance reduction technique (Johnson and
Zhang 2013) is proposed by (Korda and La 2015) and anal-
ysed by (Xu et al. 2019). How to further improve the conver-
gence rates of reinforcement learning algorithms is currently
still an open problem.

Algorithm stability is prominently reflected in the
changes to the objective function, transitioning from mean
squared errors (MSE) (Sutton and Barto 2018) to mean
squared bellman errors (MSBE) (Baird et al. 1995), then to
norm of the expected TD update (Sutton et al. 2009), and
further to mean squared projected Bellman errors (MSPBE)
(Sutton et al. 2009). On the other hand, algorithm accelera-
tion is more centered around optimizing the iterative update
formula of the algorithm itself without altering the objec-
tive function, thereby speeding up the convergence rate of
the algorithm. The emergence of new optimization objec-
tive functions often leads to the development of novel algo-
rithms. The introduction of new algorithms, in turn, tends
to inspire researchers to explore methods for accelerating
algorithms, leading to the iterative creation of increasingly
superior algorithms.

The kernel loss function can be optimized using stan-
dard gradient-based methods, addressing the issue of dou-
ble sampling in residual gradient algorithm (Feng, Li, and
Liu 2019). It ensures convergence in both on-policy and
off-policy scenarios. The logistic bellman error is convex
and smooth in the action-value function parameters, with
bounded gradients (Bas-Serrano et al. 2021). In contrast,
the squared Bellman error is not convex in the action-value
function parameters, and RL algorithms based on recursive
optimization using it are known to be unstable.

It is necessary to propose a new objective function, but
the mentioned objective functions above are all some form
of error. Is minimizing error the only option for value-based
reinforcement learning?

Based on this observation, we propose alternate objec-
tive functions instead of minimizing errors. We minimize
Variance of Bellman Error (VBE) and Variance of Projected
Bellman Error (VPBE) and derive Variance Minimization
(VM) algorithms. These algorithms preserve the invariance
of the optimal policy in the control environments, and signif-
icantly reduce the variance of gradient estimation, and thus
hastening convergence.

The contributions of this paper are as follows:



¢ Introduction of novel objective functions, VBE and
VPBE.

* Propose a on-policy VM algorithm and two off-policy
VM algorithms.

* Proof of their convergence.

* The experiments demonstrate the superiority of the VM
algorithms.

Background
Markov Decision Process

Reinforcement learning agent interacts with environment,
observes state, takes sequential decision makings to influ-
ence environment, and obtains rewards. Consider an infinite-
horizon discounted Markov Decision Process (MDP), de-
fined by a tuple (S, A, R, P,v), where S = {1,2,...,N}
is a finite set of states of the environment; A is a finite set
of actions of the agent; R : S x A x S — R is a bounded
deterministic reward function; P : S x A x S — [0,1] is
the transition probability distribution; and v € (0, 1) is the
discount factor (Sutton and Barto 2018). Due to the require-
ments of online learning, value iteration based on sampling
is considered in this paper. In each sampling, an experience
(or transition) (s, a, s’,r) is obtained.

A policy is a mapping 7w : S x A — [0, 1]. The goal of
the agent is to find an optimal policy 7* to maximize the
expectation of a discounted cumulative rewards in a long
period. For each discrete time step ¢ = 0,1, 2,3, ..., State
value function V™ (s) for a stationary policy 7 is defined as:

V7T(s) = ]E,,[Z V' Ryyrs1]Se = 3.

k=0

Linear value function for state s € S is defined as:
Vi(s) == 0" (s) =D 0ihi(s), (1)
i=1

where 0 := (01,0,...,0,,)" € R™ is a parameter vector,
¢ = (¢1,P2,...,6m)" € R™ is a feature function defined
on state space .5, and m is the feature size.

Tabular temporal difference (TD) learning (Sutton and
Barto 2018) has been successfully applied to small-scale
problems. To deal with the well-known curse of dimension-
ality of large scale MDPs, value function is usually approx-
imated by a linear model (the focus of this paper), kernel
methods, decision trees, or neural networks, etc.

On-policy and Off-policy

On-policy and off-policy algorithms are currently hot topics
in research. The main difference between the two lies in the
fact that in on-policy algorithms, the behavior policy x and
the target policy 7 are the same during the learning process.
In off-policy algorithms, however, the behavior policy and
the target policy are different. The algorithm uses data gen-
erated from the behavior policy to optimize the target policy,
which leads to higher sample efficiency and complex stabil-
ity issues.

From the theory of stochastic methods, the convergence
point of linear TD algorithms, is a parameter vector, say 6,
that satisfies

b—Af8 = 0,

where A € RISI*™ and b € R™. If the matrix A is positive
definite, then the algorithm converges. The convergence rate
of the algorithm is related to the matrix A. The larger the
minimum eigenvalue of A, the faster the convergence rate.
Next, we will compute the minimum eigenvalue of A for
TD(0), TDC, and ETD in both on-policy and off-policy set-
tings in a 2-state environment. First, we will introduce the
environment setup for the 2-state case in both on-policy and
off-policy settings.

Figure 1: 2-state

The ”1”—"2” problem has only two states. From each
state, there are two actions, left and right, which take the
agent to the left or right state. All rewards are zero. The fea-
ture ® = (1,2) " are assigned to the left and the right state.
The first policy takes the equal probability to left or right
0.5 0.5

in both states, i.e., P; = {0 5 05

} The second policy

only selects action right in both states, i.e., Po = {8 ﬂ .

The state distribution of the first policy is d; = (0.5,0.5) .
The state distribution of the second policy is d; = (0,1) .
The discount factor is v = 0.9. In the on-policy setting, the
behavior policy and the target policy are the same, so let
P, = P, = Py. In the off-policy setting, let P, = Py and
P, =P,

The key matrix Ay, of on-policy TD(0) is

A =@ D (I1-~P,)®,

where ® is the |\S| X m matrix with the ¢(s) as its rows, and
D is the | S| x |S| diagonal matrix with d, on its diagonal.
d is a vector, each component representing the steady-state
distribution under policy 7. P, denote the |S| x |S| matrix
of transition probabilities under 7. And PTTr dr = dy.

The key matrix A of off-policy TD(0) is

At = ®'D,(I-~P,)®,

where D, is the |S| x |S| diagonal matrix with d, on its
diagonal. d,, is a vector, each component representing the
steady-state distribution under behavior policy .

In the off-policy 2-state, A, = —0.2, which means that
off-policy TD(0) cannot stably converge, while , in the on-
policy 2-state, A,y = 0.475, which means that on-policy
TD(0) can stably converge.

The key matrix Arpc = AOTffC_leff, where C =
E[p¢"]. In the 2-state counterexample, Atpc = 0.016,
which means that TDC can stably converge.




Table 1: Minimum eigenvalues of various algorithms in the 2-state counterexample.

ALGORITHM TD TDC ETD VMTD VMTDC VMETD
ON-POLICY 2-STATE ~ 0.475  0.09025 \ 0.25 0.025 \
OFF-POLICY 2-STATE  —0.2 0.016 3.4 0.25 0.025 1.15

The key matrix Arpc of on-policy TDC is
Arpc = A5, CT A,
The key matrix Arpc of off-policy TDC is
Ampe = AHCT A

Arpc = 0.016 in the off-policy 2-state and Atpc = 0.09025
in the on-policy 2-state, which means that TDC can stably
converge in two settings.

To address the issue of the key matrix Ao in off-policy
TD(0) being non-positive definite, a scalar variable, F3, is
introduced to obtain the off-policy TD(0) algorithm, which
ensures convergence under off-policy conditions.

The key matrix Agrp is

Agrp = @ 'F(I —AP,)®,

where F is a diagonal matrix with diagonal elements
f(s)=d,(s)lim¢_,o E,[F}|S; = s]|, which we assume ex-
ists. The vector f € RY with components [f],=f(s) can be
written as

f=d, ++Pld, +(yP.)%d, +...
= (I - VPI)_ldW

In the off-policy 2-state, Agtp = 3.4, which means that ETD
can stably converge.

Table 1 shows Minimum eigenvalues of various algo-
rithms in the 2-state counterexample.

In the on-policy 2-state environment, the minimum eigen-
value of the key matrix for TDC is greater than that of TD(0),
indicating that TDC converges faster than TD(0) in this en-
vironment. In the off-policy 2-state environment, the mini-
mum eigenvalue of the key matrix for ETD is the largest,
suggesting that ETD has the fastest convergence rate.

Minimum eigenvalue larger, algorithm’s convergence
faster. To derive an algorithm with a larger minimum eigen-
value for matrix A, it is necessary to propose new objective
functions. The mentioned objective functions in the Intro-
duction are all forms of error. Is minimizing error the only
option for value-based reinforcement learning? Based on
this observation, we propose alternative objective functions
instead of minimizing errors.

Variance Minimization Algorithms

This section will introduce two new objective functions and
three new algorithms, including one on-policy algorithm and
two off-policy algorithms, and calculate the minimum eigen-
value of A for each of the three algorithms under on-policy
and off-policy in a 2-state environment, thereby comparing
the convergence speed of the three algorithms.

Variance Minimization TD Learning: VMTD

For on-policy learning, a novel objective function, Variance
of Bellman Error (VBE), is proposed as follows:

arg mainVBE(O) = arg n%in E[(E[6;]S] — E[E[5|S:]])?]

2
= arg min E[(E[6;|S;] — w)?]
where d; is the TD error as follows:
8t = o1 + 70/ b1 — 0/ dr. 3)
Clearly, it is no longer to minimize Bellman errors.
First, the parameter w is derived directly based on stochas-
tic gradient descent:

W1  wp + Be(0r — wy), 4
Then, based on stochastic semi-gradient descent, the up-
date of the parameter 6 is as follows:

Ori1 + 0p + (6 — wi) Py @)
The semi-gradient of the (2) with respect to 6 is
—1VVBE(0)
= E[(E[6:|S] — E[E[6:]Se]]) (¢t — E[¢])]
= E[5t¢t] - ]E[(St]E[d)t]v

The key matrix Ayyrp and byyrp of on-policy VMTD is
AvymtD
= E[(¢—7¢)0"] - E[p —v¢'|E[6T] -
= XL dx(5)0(5) (6(5) = 7 L Palssr ()

.
=, da(5)6(s) - 32, da(5)(9(5) =7 Sy [Palswr(s'))

= ®D,(1—1P)®— & d.d (1—~P,)®
= ®T(D, —dd)1—~P,)®,

bvmtp
= E(r-E[r])¢
= E[r¢] - E[r]E[¢]

= ‘I>T(D,T — d,,d;—)rﬂ.
It can be easily obtained that The key matrix Aymrp and
bvmtp of off-policy VMTD are, respectively,

Ayurp = @' (D, — dpd,) ) (1 — AP,)®,

bvmrp = @' (D, — dﬂd;)rﬂ,

In the on-policy 2-state environment, the minimum eigen-
value of the key matrix for VMTD is greater than that of
on-policy TDC and smaller than that of on-policy TD(0), in-
dicating that VMTD converges faster than TDC and slower
than TD(0) in this environment. In the off-policy 2-state en-
vironment, the minimum eigenvalue of the key matrix for
VMTD is greater than 0, suggesting that VMTD can con-
verge stably.



Variance Minimization TDC Learning: VMTDC

For off-policy learning, we propose a new objective func-
tion, called Variance of Projected Bellman error (VPBE),
and the corresponding algorithm is called VMTDC.

VPBE(9)
=E[(0 —E[0))¢] 'E[pp "] 'E[(6 — E[6])¢p]  (6)
=E[(§ —w)p] E[pp "] 'E[(§ — w)d), ©)

where w is used to approximate E[d], i.e., w = E[J].
The gradient of the (6) with respect to 6 is

~1VVPBE()) = W 6) — E[(7¢' —

El¢ |~ E[(6 — E[5])¢)

= E|((¢—1¢)—El(¢—1¢)])0"]
Elg¢T]"!
E[(r+7¢’T0

—E[r +~¢' 0

0))o]|

—¢'0
—070))0].

It can be easily obtained that The key matrix Ayyrpc and
bvmtpc of VMTDC are, respectively,

T -1
AVMTDC = AVMTDC AVMTD;

T —1
bymtpe = AymtpC™ bymrp,

where, for on-policy, Aymrp = @' (D —dd] ) (I—~P,)®
and byyrp = @' (D, — d.d])r, and, for off-policy,
AVMTD = ‘PT(DH — d#dz)(l — ’yPTr)‘I) and bVMTD =
&' (D, — d#dz)r,T

In the process of computing the gradient of the (7) with
respect to 6, w is treated as a constant. So, the derivation
process of the VMTDC algorithm is the same as that of the
TDC algorithm, the only difference is that the original § is
replaced by § — w. Therefore, we can easily get the updated
formula of VMTDC, as follows:

Or+1 < Ok + o[(0x — wi) Pk — YPrr1 (P ur)],  (8)

U1 g+ [0k — wi — BF uk| o, Q)
and

Wk41 < Wg + 5k(§k — wk). (10)

The VMTDC algorithm (8) is derived to work with a given
set of sub-samples—in the form of triples (Sy, R, S},) that
match transitions from both the behavior and target policies.

In the on-policy 2-state environment, the minimum eigen-
value of the key matrix for VMTDC is smaller than that of
TD(0), TDC and VMTD indicating that VMTDC converges
slower than them in this on-policy. In the off-policy 2-state
environment, the minimum eigenvalue of the key matrix for
VMTD is greater than TDC, suggesting that VMTDC con-
verges faster than them in off-policy environment.

Variance Minimization ETD Learning: VMETD

Based on the off-policy TD algorithm, a scalar, F, is in-
troduced to obtain the ETD algorithm, which ensures con-
vergence under off-policy conditions. This paper further in-
troduces a scalar, w, based on the ETD algorithm to obtain
VMETD. VMETD by the following update:

Fy < ypt1Fy 1 +1, (11)
Orv1 < O + ar(Fypede — wi) i, (12)
Wit1 < Wi + Be(Fipidy — wi), (13)
where w is used to estimate E[F'pd], i.e., w = E[Fpd].
(12) can be rewritten as
9t+1 — 0+ at(FtPt5t - Wt)¢t — Wiy 1 Pt
= O + o (Fipidy — By [Fypede|0:]) de
= O+ arFypi(rivs + 70 ¢vr — 0/ 61

*OétEu [Ftpt5t]¢t

du(s)qﬁ(s) Yoo du(s) limt%oo E,[F

t‘St :S]

= O+ a{(Fipirevr — Eu[Fipireg1]) o
byMETD, ¢
— (Eypide (o — 7¢5t+1)T - ¢tEu[Ftpt(¢t - 7¢t+1)]—r) 915}'
AvMETD, ¢
Therefore,
AvMETD
= limy_,o0 E[AvmErD,(]
= limoo Bu[Fypede(dr — v141) "]
- 1imt—>oo uloEy [Ftpt(¢t Ypr1)] "
= limy o E [¢tFtPt( Ydr41) ']
—1imt—>oo ulo ]hmt—>oo wlFepe(dr — vi41)]
= ZS du(S) 1imt—>oo E;L[Ft|St = 5} [Pt¢t(¢t - ’Y¢t+1)T\St = 8]

¢(s) "

Eulpe(dr — vor41) T[Sy = 5]
= 2 F()Er[pe(dr — vr41) T[Sy = 5]
=2 du(8)(s) 3o, f(8)EBa[(dr — ybr11) " |Se = 5]
= Zs f(s)p(s)(9(s) — 72 [P Tr}SS’ o(s /))T
=2 Au(8)p(s) x 3o, f()(D(8) =7 2o [Prlss
= ‘I‘TF(I—’yPﬁ)@ @TdufT(I—’yPM)q)
= ®T(F—d,f")(I—~P;)®
= ‘I'T(F(I_’VPW) _dufT(I_VPw))‘}
= ®T(FI—P;)—d,d))®
bvmETD
= limy_,00 E[bvMETD, 1]
= im0 B [Frpi Riv1¢4]
- hmt—>00 E,u [¢t]Ep [Ftkak+1]

lim; o0 Eu [¢tFtptrt+1]

—lim; o0 Eu [¢)t]ﬂ“:u [¢t]E;4 [Ftptrt-i-l]

= lim¢e Ep[ff)tFtPtTt-s-l]

—limy_, o Ey [¢t] limy 00 Eu [FtptTt+1]

= 2 f(8)0(s)rr = 2o, du(s)d(s) x 32, f(s)rx

= & (F—d,f")r,.
In the off-policy 2-state environment, the minimum eigen-
value of the key matrix for VMETD is greater than that of
TD(0), TDC and VMTD and smaller than that of ETD, indi-
cating that VMTDC converges faster than TD(0), TDC and
VMTD and slower than ETD in this off-policy. However,
subsequent experiments showed that the VMETD algorithm
converges more smoothly and performs best in controlled
experiments.



Theoretical Analysis

This section primarily focuses on proving the convergence
of VMTD, VMTDC, and VMETD.

Theorem 1. (Convergence of VMTD). In the case of on-
policy learning, consider the iterations (4) and (5) with (3)
of VMTD. Let the step-size sequences oy, and B, k > 0
satisfy in this case oy, P > 0, for all k, leio a =
Yo oBr = 00, >opeor < 00, > opeoBi < o0, and
ar = o(Br). Assume that (¢y, 7, ¢),) is an Li.d. sequence
with uniformly bounded second moments, where @i and
@), are sampled from the same Markov chain. Let A =
Cov(g,d — v¢'), b = Cov(r, d). Assume that matrix A is
non-singular. Then the parameter vector 0, converges with
probability one to A™"b.

Proof. The proof is based on Borkar’s Theorem for general
stochastic approximation recursions with two time scales
(Borkar 1997).

A sketch proof is given as follows. In the fast time scale,
the parameter w converges to E[d]0]. In the slow time scale,
the associated ODE is

h(6(t)) = —AO(t) + b.
A = COV(¢7 ¢ - 7¢/)

_ cOv(¢.,¢>+Cov(¢fv¢'.,2¢w¢’>fCov(w’,w’)
Cov<¢,¢>+Cov(¢—w’é¢—w¢’)—wQCov(¢',¢'> (14)
(1—~*)Cov(,0)+Cov(¢—v¢',0—7¢')

2 9

where we eventually used Cov(¢’, ¢') = Cov(¢, ¢) !. Note
that the covariance matrix Cov(¢, ¢) and Cov (¢ —v¢', & —
~v¢') are semi-positive definite. Then, the matrix A is semi-
positive definite because A is linearly combined by two
positive-weighted semi-positive definite matrice (14). Fur-
thermore, A is nonsingular due to the assumption. Hence,
the matrix A is positive definite. And, the parameter 6 con-
verges to A~ 1. O

Please refer to the appendix for VMTD’s detailed proof
process.

Theorem 2. (Convergence of VMTDC). In the case of off-
policy learning, consider the iterations (10), (9) and (8) of
VMTDC. Let the step-size sequences ay, Ci and By, k > 0
satisfy in this case oy, Cr, B > 0, for all k, Z,?;O Qp =
D ko Br = Yoo G = 00, 2oplg o < 00, 200G <
00, YopeoBE < o0, and a; = 0((k), (k= 0o(Bk). As-
sume that (¢, 7, ¢),) is an i.i.d. sequence with uniformly
bounded second moments. Let A = Cov(d, ¢ — v¢'), b =
Cov(r, ¢), and C = E[p¢"]. Assume that A and C are non-
singular matrices. Then the parameter vector 0, converges
with probability one to A~ 'b.

Proof. The proof is similar to that given by (Sutton et al.
2009) for TDC, but it is based on multi-time-scale stochastic
approximation.

'The covariance matrix Cov (¢, ¢") is equal to the covariance
matrix Cov(¢, ¢) if the initial state is re-reachable or initialized
randomly in a Markov chain for on-policy update.

A sketch proof is given as follows. In the fastest time
scale, the parameter w converges to E[d|uy, 6x]. In the sec-
ond fast time scale, the parameter u converges to C~"E[(6 —
E[6]0k])#|0%]- In the slower time scale, the associated ODE
is

h((t)) = ATCT(—AB(t) + b).

The matrix A" C™A is positive definite. Thus, the parame-
ter @ converges to A~ 'b. O

Please refer to the appendix for VMTDC’s detailed proof
process.

Theorem 3. (Convergence of VMETD). In the case of off-
policy learning, consider the iterations (11), (13) and (12)
of VMETD. Let the step-size sequences oy and B, k > 0
satisfy in this case oy, B > 0, for all k, > po qouy =
S0 B = o0, Sigad < o0, S L < oo, and
ay = o(Br). Assume that (¢y, 7k, @).) is an i.i.d. sequence
with uniformly bounded second moments, where ¢y, and @),
are sampled from the same Markov chain. Let Ayygrp =
(DT(F(I — ’)/Pﬂ-) — dudl—[)@, bVMETD = @T(F — dufT)T‘ﬂ.
Assume that matrix A is non-singular. Then the parameter
vector 0y, converges with probability one to Ay yyprpbvmETD-

Proof. The proof of VMETD’s convergence is also based
on Borkar’s Theorem for general stochastic approximation
recursions with two time scales (Borkar 1997).

A sketch proof is given as follows. In the fast time scale,
the parameter w converges to E, [F'pd|6;]. Recursion (12) is
considered the slower timescale. If the key matrix Aymerp
is positive definite, then 6 converges.

(F(I—P,) — dyd,) )e
=F(I—P;)e —dyd,e
= (1 —~)Fe — dud;e

15
= (1=[@X=~P])"" —1d, 1
=1 =7 _(P]) ~1d,
t=0
= (1= _(P])dy >0,
t=1
e (F(1—7P;) —d,d,)
=e FI—~P;) —e'dyud,)
=d) —e'd,d] (16)
T T
=d) —d,
= 0,

where ¢ is the all-ones vector. (15) and (16) show that the
matrix F(I — 4P;) — dudz of diagonal entries are positive
and its off-diagonal entries are negative. So its each row sum
plus the corresponding column sum is positive. SO Aymerp
is positive definite. O



Optimal Policy Invariance

This section prove the optimal policy invariance of VMTD,
VMTDC and VMETD in control experiments, laying the
groundwork for subsequent experiments.

As shown in Table 2, although there is a bias between the
true value and the predicted value, action as is still chosen
under the greedy-policy. On the contrary, supervised learn-
ing is usually used to predict temperature, humidity, mor-
bidity, etc. If the bias is too large, the consequences could be
serious.

Table 2: Comparison of action selection with and without
constant bias in () values.

ACTION @ VALUE () VALUE WITH BIAS
Q(S7 CLO) 1 5
Q(s,a1) 2 6
Q(S7 CL?) 3 7
Q(S, CL3) 4 8
arg min, Q(s, a) as as

In addition, reward shaping can significantly speed up the
learning by adding a shaping reward F'(s, s’) to the original
reward r, where F(s,s’) is the general form of any state-
based shaping reward. Static potential-based reward shaping
(Static PBRS) maintains the policy invariance if the shaping
reward follows from F'(s, s') = v f(s’) — f(s) (Ng, Harada,
and Russell 1999).

This means that we can make changes to the TD error
§ =r+~v0T ¢ — 07 ¢ while still ensuring the invariance of
the optimal policy,

S—w=r+10"¢' —0"¢p —w,

where w is a constant, acting as a static PBRS. This also
means that algorithms with the optimization goal of mini-
mizing errors, after introducing reward shaping, may result
in larger or smaller bias. Fortunately, as discussed above,
bias is acceptable in reinforcement learning. However, the
problem is that selecting an appropriate w requires expert
knowledge. This forces us to learn w dynamically, i.e., w =
w; and dynamic PBRS can also maintain the policy invari-
ance if the shaping reward is F'(s,t,s',t') = vf(s',t") —
f(s,t), where t is the time-step the agent reaches in state
s (Devlin and Kudenko 2012). However, this result requires
the convergence guarantee of the dynamic potential function
f(s,t). If f(s,t) does not converge as the time-step t — oo,
the Q-values of dynamic PBRS are not guaranteed to con-
verge.

Let f,(s) = »Yw_tl- Thus, F,, (s, Sl) = Ve (8/) -
fuw, (8) = wy is adynamic PBRS. And if w converges finally,
the dynamic potential function f (s, t) will converge. Bias is
the expected difference between the predicted value and the
true value. Therefore, under the premise of bootstrapping,
we first think of letting w = E[d] or w = E[Fpd].

Experimental Studies

This section assesses algorithm performance through ex-
periments, which are divided into policy evaluation ex-

Figure 2: Maze.

periments and control experiments. The evaluation exper-
imental environments is the 2-state. In a 2-state environ-
ment, we conducted two types of experiments—on-policy
and off-policy—to verify the relationship between the con-
vergence speed of the algorithm and the smallest eigen-
value of the key matrix A. Control experiments, by allow-
ing the algorithm to interact with the environment to op-
timize the policy, can evaluate its performance in learning
the optimal policy. This provides a more comprehensive as-
sessment of the algorithm’s overall capabilities. The con-
trol experimental environments are Maze, CliffWalking-vO0,
MountainCar-v0, and Acrobot-v1. The control algorithms
for TDC, ETD, VMTDC, and VMETD are named GQ, EQ,
VMGQ, and VMEQ, respectively. For TD and VMTD con-
trol algorithms, there are two variants each: Sarsa and Q-
learning for TD, and VMSarsa and VMQ for VMTD.

Testing Tasks

Maze: The learning agent should find a shortest path from
the upper left corner to the lower right corner. In each state,
there are four alternative actions: up, down, le ft, and right,
which takes the agent deterministically to the corresponding
neighbour state, except when a movement is blocked by an
obstacle or the edge of the maze. Rewards are —1 in all tran-
sitions until the agent reaches the goal state. The discount
factor v = 0.99, and states s are represented by tabular fea-
tures.The maximum number of moves in the game is set to
1000.

The other three control environments: Cliff Walking,
Mountain Car, and Acrobot are selected from the gym of-
ficial website and correspond to the following versions:
“CliffWalking-v0”, “MountainCar-v0” and “Acrobot-v1”.
For specific details, please refer to the gym official website.
The maximum number of steps for the Mountain Car envi-
ronment is set to 1000, while the default settings are used for
the other two environments. In Mountain car and Acrobot,
features are generated by tile coding.

For all policy evaluation experiments, each experiment is
independently run 100 times. For all control experiments,
each experiment is independently run 50 times. For specific
experimental parameters, please refer to the appendix.

Experimental Results and Analysis

Figure 3(a) shows the learning curves for the on-policy 2-
state policy evaluation experiment. In this setup, the conver-
gence speed of TD, VMTD, TDC, and VMTDC decreases
sequentially. Table 1 indicates that the smallest eigenvalue
of the key matrix for these four algorithms is greater than
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Figure 3: Learning curses of one evaluation environment and four contral environments.

0 and decreases sequentially, which is consistent with the
experimental curves and table values.

Figure B displays the learning curves for the off-policy
2-state policy evaluation experiment. In this setup, the con-
vergence speed of ETD, VMETD, VMTD, VMTDC, and
TDC decreases sequentially, while TD diverges. Table 1
shows that the smallest eigenvalue of the key matrix for
ETD, VMETD, VMTD, VMTDC, and TDC is greater than
0 and decreases sequentially, while the smallest eigenvalue
for TD is less than 0. This is consistent with the experimen-
tal curves and table values. Remarkably, although VMTD is
guaranteed to converge under on-policy conditions, it still
converges in the off-policy 2-state scenario. The update for-
mula of VMTD indicates that it is essentially an adjustment
and correction of the TD update, with the introduction of
the parameter w making the variance of the gradient esti-
mate more stable, thereby making the update of theta more
stable.

Figures 3(c), 3(d), 3(e) and 3(f) show the learning curves
for four control experiments. A common feature observed
across these experiments is that VMEQ outperforms EQ,
VMGQ outperforms GQ, VMQ outperforms Q-learning,
and VMSarsa outperforms Sarsa. For the Maze and Clif-
fwalking experiments, VMEQ demonstrated the best perfor-
mance with the fastest convergence speed. In the Mountain

Car and Acrobot experiments, the performance of the four
VM algorithms was nearly identical and all outperformed
the other algorithms.

Overall, whether in policy evaluation experiments or con-
trol experiments, the VM algorithms have demonstrated su-
perior performance, especially excelling in the control ex-
periments.

Conclusion and Future Work

Value-based reinforcement learning typically aims to min-
imize error as an optimization objective. As an alterna-
tion, this study proposes two new objective functions: VBE
and VPBE, and derives an on-policy algorithm: VMTD and
two off-policy algorithms: VMTDC and VMETD. All algo-
rithms demonstrated superior performance in policy evalua-
tion and control experiments. Both algorithms demonstrated
superior performance in policy evaluation and control exper-
iments. Future work may include, but are not limited to,

 analysis of the convergence rate of VMTDC and
VMETD.

* extensions of VBE and VPBE to multi-step returns.

* extensions to nonlinear approximations, such as neural
networks.
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