
AAAI Press Anonymous Submission
Instructions for Authors Using LATEX

Anonymous submission

Abstract

The existing research on value-based reinforcement learning
also minimizes the error. However, is error minimization re-
ally the only option for value-based reinforcement learning?
We can easily observe that the policy on action choosing
probabilities is often related to the relative values, and has
nothing to do with their absolute values. Based on this ob-
servation, we propose the objective of variance minimization
instead of error minimization, derive many new variance min-
imization algorithms, both including a traditional parameter
ω, and conduct an analysis of the convergence rate and ex-
periments. The experimental results show that our proposed
variance minimization algorithms converge much faster.

Introduction
Reinforcement learning can be mainly divided into two
categories: value-based reinforcement learning and policy
gradient-based reinforcement learning. This paper focuses
on temporal difference learning based on linear approxi-
mated valued functions. Its research is usually divided into
two steps: the first step is to establish the convergence of the
algorithm, and the second step is to accelerate the algorithm.

In terms of stability, Sutton (1988) established the conver-
gence of on-policy TD(0), and Tsitsiklis and Van Roy (1997)
established the convergence of on-policy TD(λ). However,
“The deadly triad” consisting of off-policy learning, boot-
strapping, and function approximation makes the stability
a difficult problem (Sutton and Barto 2018). To solve this
problem, convergent off-policy temporal difference learning
algorithms are proposed, e.g., BR (Baird et al. 1995), GTD
(Sutton, Maei, and Szepesvári 2008), GTD2 and TDC (Sut-
ton et al. 2009), ETD (Sutton, Mahmood, and White 2016),
and MRetrace (Chen et al. 2023).

In terms of acceleration, Hackman (2012) proposed Hy-
brid TD algorithm with on-policy matrix. Liu et al. (2015,
2016, 2018) proposed true stochastic algorithms, i.e., GTD-
MP and GTD2-MP, from a convex-concave saddle-point for-
mulation. Second-order methods are used to accelerate TD
learning, e.g., Quasi Newton TD (Givchi and Palhang 2015)
and accelerated TD (ATD) (Pan, White, and White 2017).
Hallak et al. (2016) introduced an new parameter to reduce
variance for ETD. Zhang and Whiteson (2022) proposed
truncated ETD with a lower variance. Variance Reduced
TD with direct variance reduction technique (Johnson and

Zhang 2013) is proposed by (Korda and La 2015) and anal-
ysed by (Xu et al. 2019). How to further improve the conver-
gence rates of reinforcement learning algorithms is currently
still an open problem.

Algorithm stability is prominently reflected in the
changes to the objective function, transitioning from mean
squared errors (MSE) (Sutton and Barto 2018) to mean
squared bellman errors (MSBE) (Baird et al. 1995), then to
norm of the expected TD update (Sutton et al. 2009), and
further to mean squared projected Bellman errors (MSPBE)
(Sutton et al. 2009). On the other hand, algorithm accelera-
tion is more centered around optimizing the iterative update
formula of the algorithm itself without altering the objec-
tive function, thereby speeding up the convergence rate of
the algorithm. The emergence of new optimization objec-
tive functions often leads to the development of novel algo-
rithms. The introduction of new algorithms, in turn, tends
to inspire researchers to explore methods for accelerating
algorithms, leading to the iterative creation of increasingly
superior algorithms.

The kernel loss function can be optimized using stan-
dard gradient-based methods, addressing the issue of dou-
ble sampling in residual gradient algorithm (Feng, Li, and
Liu 2019). It ensures convergence in both on-policy and
off-policy scenarios. The logistic bellman error is convex
and smooth in the action-value function parameters, with
bounded gradients (Bas-Serrano et al. 2021). In contrast,
the squared Bellman error is not convex in the action-value
function parameters, and RL algorithms based on recursive
optimization using it are known to be unstable.

It is necessary to propose a new objective function, but
the mentioned objective functions above are all some form
of error. Is minimizing error the only option for value-based
reinforcement learning?

For policy evaluation experiments, differences in ob-
jective functions may result in inconsistent fixed points.
This inconsistency makes it difficult to uniformly compare
the superiority of algorithms derived from different objec-
tive functions. However, for control experiments, since the
choice of actions depends on the relative values of the Q
values rather than their absolute values, the presence of so-
lution bias is acceptable.

Based on this observation, we propose alternate objec-
tive functions instead of minimizing errors. We minimize



Variance of Bellman Error (VBE) and Variance of Projected
Bellman Error (VPBE) and derive Variance Minimization
(VM) algorithms. These algorithms preserve the invariance
of the optimal policy in the control environments, but signif-
icantly reduce the variance of gradient estimation, and thus
hastening convergence.

The contributions of this paper are as follows: (1) Intro-
duction of novel objective functions based on the invari-
ance of the optimal policy. (2) Derived three variance mini-
mization algorithms, including on-policy and off-policy. (3)
Proof of their convergence. (4) Analysis of the convergence
rate of on-policy algorithm. (5) Experiments demonstrating
the faster convergence speed of the proposed algorithms.

Background
Reinforcement learning agent interacts with environment,
observes state, takes sequential decision makings to influ-
ence environment, and obtains rewards. Consider an infinite-
horizon discounted Markov Decision Process (MDP), de-
fined by a tuple ⟨S,A,R, P, γ⟩, where S = {1, 2, . . . , N}
is a finite set of states of the environment; A is a finite set
of actions of the agent; R : S × A × S → R is a bounded
deterministic reward function; P : S × A × S → [0, 1] is
the transition probability distribution; and γ ∈ (0, 1) is the
discount factor (Sutton and Barto 2018). Due to the require-
ments of online learning, value iteration based on sampling
is considered in this paper. In each sampling, an experience
(or transition) ⟨s, a, s′, r⟩ is obtained.

A policy is a mapping π : S × A → [0, 1]. The goal of
the agent is to find an optimal policy π∗ to maximize the
expectation of a discounted cumulative rewards in a long
period. State value function V π(s) for a stationary policy
π is defined as:

V π(s) = Eπ[

∞∑
k=0

γkRk|s0 = s].

Linear value function for state s ∈ S is defined as:

Vθ(s) := θ⊤ϕ(s) =

m∑
i=1

θiϕi(s), (1)

where θ := (θ1, θ2, . . . , θm)⊤ ∈ Rm is a parameter vector,
ϕ := (ϕ1, ϕ2, . . . , ϕm)⊤ ∈ Rm is a feature function defined
on state space S, and m is the feature size.

Tabular temporal difference (TD) learning (Sutton and
Barto 2018) has been successfully applied to small-scale
problems. To deal with the well-known curse of dimension-
ality of large scale MDPs, value function is usually approx-
imated by a linear model, kernel methods, decision trees, or
neural networks, etc. This paper focuses on the linear model,
where features are usually hand coded by domain experts.

Variance Minimization Algorithms
Motivation
As shown in Table 1, although there is a bias between the
true value and the predicted value, action a3 is still chosen

Table 1: Classification accuracies for naive Bayes and flexi-
ble Bayes on various data sets.

ACTION Q VALUE Q VALUE WITH BIAS

Q(s, a0) 1 5
Q(s, a1) 2 6
Q(s, a2) 3 7
Q(s, a3) 4 8
argmina Q(s, a) a3 a3

under the greedy-policy. On the contrary, supervised learn-
ing is usually used to predict temperature, humidity, mor-
bidity, etc. If the bias is too large, the consequences could be
serious.

In addition, reward shaping can significantly speed up the
learning by adding a shaping reward F (s, s′) to the original
reward r, where F (s, s′) is the general form of any state-
based shaping reward. Static potential-based reward shaping
(Static PBRS) maintains the policy invariance if the shaping
reward follows from F (s, s′) = γf(s′)− f(s) (Ng, Harada,
and Russell 1999).

This means that we can make changes to the TD error
δ = r+γθ⊤ϕ′−θ⊤ϕ while still ensuring the invariance of
the optimal policy,

δ − ω = r + γθ⊤ϕ′ − θ⊤ϕ− ω,

where ω is a constant, acting as a static PBRS. This also
means that algorithms with the optimization goal of mini-
mizing errors, after introducing reward shaping, may result
in larger or smaller bias. Fortunately, as discussed above,
bias is acceptable in reinforcement learning. However, the
problem is that selecting an appropriate ω requires expert
knowledge. This forces us to learn ω dynamically, i.e., ω =
ωt and dynamic PBRS can also maintain the policy invari-
ance if the shaping reward is F (s, t, s′, t′) = γf(s′, t′) −
f(s, t), where t is the time-step the agent reaches in state
s (Devlin and Kudenko 2012). However, this result requires
the convergence guarantee of the dynamic potential function
f(s, t). If f(s, t) does not converge as the time-step t→∞,
the Q-values of dynamic PBRS are not guaranteed to con-
verge.

Let fωt
(s) = ωt

γ−1 . Thus, Fωt
(s, s′) = γfωt

(s′) −
fωt

(s) = ωt is a dynamic PBRS. And if ω converges finally,
the dynamic potential function f(s, t) will converge. Bias is
the expected difference between the predicted value and the
true value. Therefore, under the premise of bootstrapping,
we first think of letting ω

.
= E[E[δ|s]] = E[δ].

Variance Minimization TD Learning: VMTD
For on-policy learning, a novel objective function, Variance
of Bellman Error (VBE), is proposed as follows:

argminθ VBE(θ) = argminθ E[(E[δ|s]− E[E[δ|s]])2]
= argminθ,ω E[(E[δ|s]− ω)2].

(2)
Clearly, it is no longer to minimize Bellman errors.



Algorithm 1: VMTD algorithm with linear function approx-
imation in the on-policy setting

Input: θ0, ω0, γ, learning rate αt and βt

repeat
For any episode, initialize θ0 arbitrarily, ω0 to 0, γ ∈
(0, 1], and αt and βt are constant.
for t = 0 to T − 1 do

Take At from St according to policy π, and arrive at
St+1

Observe sample (St,Rt+1,St+1) at time step t (with
their corresponding state feature vectors)
δt = Rt+1 + γθ⊤

t ϕ
′
t − θ⊤

t ϕt

θt+1 ← θt + αt(δt − ωt)ϕt

ωt+1 ← ωt + βt(δt − ωt)
St = St+1

end for
until terminal episode

First, the parameter ω is derived directly based on stochas-
tic gradient descent:

ωk+1 ← ωk + βk(δk − ωk), (3)

where δk is the TD error as follows:

δk = rk+1 + γθ⊤
k ϕk+1 − θ⊤

k ϕk. (4)

Then, based on stochastic semi-gradient descent, the up-
date of the parameter θ is as follows:

θk+1 ← θk + αk(θk − ωk)ϕk. (5)

For control tasks, two extensions of VMTD are named
VMSarsa and VMQ respectively, and the update formulas
are shown below:

θk+1 ← θk + αk(δk − ωk)ϕ(sk, ak). (6)

and
ωk+1 ← ωk + βk(δk − ωk), (7)

where δk delta in VMSarsa is:

δk = rk+1 + γθ⊤
k ϕ(sk+1, ak+1)− θ⊤

k ϕ(sk, ak), (8)

and δk delta in VMQ is:

δk = rk+1 + γmax
a∈A

θ⊤
k ϕ(sk+1, a)− θ⊤

k ϕ(sk, ak). (9)

Variance Minimization TDC Learning: VMTDC
For off-policy learning, we employ a projection opera-
tor. The objective function is called Variance of Projected
Bellman error (VPBE), and the corresponding algorithm is
called VMTDC.

VPBE(θ) = E[(δ − E[δ])ϕ]⊤E[ϕϕ⊤]−1E[(δ − E[δ])ϕ]
= E[(δ − ω)ϕ]⊤E[ϕϕ⊤]−1E[(δ − ω)ϕ],

(10)
where ω is used to estimate E[δ], i.e., ω .

= E[δ].
The derivation process of the VMTDC algorithm is the

same as that of the TDC algorithm, the only difference is

Algorithm 2: VMTDC algorithm with linear function ap-
proximation in the off-policy setting

Input: θ0, u0, ω0, γ, learning rate αt, ζt and βt, behavior
policy µ and target policy π
repeat

For any episode, initialize θ0 arbitrarily, u0 and ω0 to
0, γ ∈ (0, 1], and αt, ζt and βt are constant.
for t = 0 to T − 1 do

Take At from St according to µ, and arrive at St+1

Observe sample (St,Rt+1,St+1) at time step t (with
their corresponding state feature vectors)
δt = Rt+1 + γθ⊤

t ϕt+1 − θ⊤
t ϕt

ρt ← π(At|St)
µ(At|St)

θt+1 ← θt + αtρt[(δt − ωt)ϕt − γϕt+1(ϕ
⊤
t ut)]

ut+1 ← ut + ζt[ρt(δt − ωt)− ϕ⊤
t ut]ϕt

ωt+1 ← ωt + βtρt(δt − ωt)
St = St+1

end for
until terminal episode

that the original δ is replaced by δ − ω. Therefore, we can
easily get the updated formula of VMTDC, as follows:

θk+1 ← θk+αk[(δk−ωk)ϕ(sk)−γϕ(sk+1)(ϕ
⊤(sk)uk)],

(11)
uk+1 ← uk + ζk[δk − ωk − ϕ⊤(sk)uk]ϕ(sk), (12)

and
ωk+1 ← ωk + βk(δk − ωk), (13)

Now, we will introduce the improved version of the GQ(0)
algorithm, named VMGQ(0):

θk+1 ← θk + αk[(δk − ωk)ϕ(sk, ak)
− γϕ(sk+1, A

∗
k+1)(ϕ

⊤(sk, ak)uk)],
(14)

uk+1 ← uk + ζk[(δk − uk)− ϕ⊤(sk, ak)uk]ϕ(sk, ak),
(15)

and
ωk+1 ← ωk + βk(δk − ωk), (16)

where δk is (9) and A∗
k+1 = argmaxa(θ

⊤
k ϕ(sk+1, a)).

Variance Minimization ETD Learning: VMETD
Based on the off-policy TD algorithm, a scalar, F , is in-
troduced to obtain the ETD algorithm, which ensures con-
vergence under off-policy conditions. This paper further in-
troduces a scalar, ω, based on the ETD algorithm to obtain
VMETD. VMETD by the following update:

ρk ←
π(Ak|Sk)

µ(Ak|Sk)
(17)

Fk ← γρk−1Fk−1 + 1, (18)
θk+1 ← θk + αk(Fkρkδk − ωk)ϕk, (19)
ωk+1 ← ωk + βk(Fkρkδk − ωk), (20)

where µ is behavior policy and π is target policy, Ft is a
scalar variable, F0 = 1, ω is used to estimate E[δ], i.e.,



Algorithm 3: VMETD algorithm with linear function ap-
proximation in the off-policy setting

Input: θ0, F0, ω0, γ, learning rate αt, ζt and βt, behavior
policy µ and target policy π
repeat

For any episode, initialize θ0 arbitrarily, F0 to 1 and ω0

to 0, γ ∈ (0, 1], and αt, ζt and βt are constant.
for t = 0 to T − 1 do

Take At from St according to µ, and arrive at St+1

Observe sample (St,Rt+1,St+1) at time step t (with
their corresponding state feature vectors)
δt = Rt+1 + γθ⊤

t ϕt+1 − θ⊤
t ϕt

ρt ← π(At|St)
µ(At|St)

Ft ← γρtFt−1 + 1
θt+1 ← θt + αt(Ftρtδt − ωt)ϕt

ωt+1 ← ωt + βt(Ftρtδt − ωt)
St = St+1

end for
until terminal episode

ω
.
= E[δ], and F is a diagonal matrix with diagonal elements

f(s)=̇dµ(s) limt→∞ Eµ[Fk|Sk = s], which we assume ex-
ists. The vector f ∈ RN with components [f]s=̇f(s) can be
written as

f = dµ + γP⊤
π dµ + (γP⊤

π )
2dµ + . . .

= (I− γP⊤
π )

−1dµ.
(21)

Theoretical Analysis
The purpose of this section is to establish the stabilities of
the VMTD algorithm and the VMTDC algorithm, and also
presents a corollary on the convergence rate of VMTD.
Theorem 1. (Convergence of VMTD). In the case of on-
policy learning, consider the iterations (3) and (5) with (4)
of VMTD. Let the step-size sequences αk and βk, k ≥ 0
satisfy in this case αk, βk > 0, for all k,

∑∞
k=0 αk =∑∞

k=0 βk = ∞,
∑∞

k=0 α
2
k < ∞,

∑∞
k=0 β

2
k < ∞, and

αk = o(βk). Assume that (ϕk, rk,ϕ
′
k) is an i.i.d. sequence

with uniformly bounded second moments, where ϕk and
ϕ′

k are sampled from the same Markov chain. Let A =
Cov(ϕ,ϕ − γϕ′), b = Cov(r,ϕ). Assume that matrix θ is
non-singular. Then the parameter vector θk converges with
probability one to A−1b.

Proof. The proof is based on Borkar’s Theorem for general
stochastic approximation recursions with two time scales
(Borkar 1997).

A new one-step linear TD solution is defined as:

0 = E[(δ − E[δ])ϕ] = −Aθ + b.

Thus, the VMTD’s solution is θVMTD = A−1b.
First, note that recursion (5) can be rewritten as

θk+1 ← θk + βkξ(k),

where
ξ(k) =

αk

βk
(δk − ωk)ϕk

Due to the settings of step-size schedule αk = o(βk),
ξ(k) → 0 almost surely as k → ∞. That is the increments
in iteration (3) are uniformly larger than those in (5), thus (3)
is the faster recursion. Along the faster time scale, iterations
of (3) and (5) are associated to ODEs system as follows:

θ̇(t) = 0, (22)

ω̇(t) = E[δt|θ(t)]− ω(t). (23)

Based on the ODE (22), θ(t) ≡ θ when viewed from the
faster timescale. By the Hirsch lemma (Hirsch 1989), it fol-
lows that ||θk − θ|| → 0 a.s. as k → ∞ for some θ that
depends on the initial condition θ0 of recursion (5). Thus,
the ODE pair (22)-(23) can be written as

ω̇(t) = E[δt|θ]− ω(t). (24)

Consider the function h(ω) = E[δ|θ] − ω, i.e., the driv-
ing vector field of the ODE (24). It is easy to find that the
function h is Lipschitz with coefficient −1. Let h∞(·) be
the function defined by h∞(ω) = limx→∞

h(xω)
x . Then

h∞(ω) = −ω, is well-defined. For (24), ω∗ = E[δ|θ] is
the unique globally asymptotically stable equilibrium. For
the ODE

ω̇(t) = h∞(ω(t)) = −ω(t), (25)

apply V⃗ (ω) = (−ω)⊤(−ω)/2 as its associated strict Lia-
punov function. Then, the origin of (25) is a globally asymp-
totically stable equilibrium.

Consider now the recursion (3). Let Mk+1 = (δk −
ωk) − E[(δk − ωk)|F(k)], where F(k) = σ(ωl,θl, l ≤
k;ϕs,ϕ

′
s, rs, s < k), k ≥ 1 are the sigma fields generated

by ω0,θ0, ωl+1,θl+1,ϕl,ϕ
′
l, 0 ≤ l < k. It is easy to ver-

ify that Mk+1, k ≥ 0 are integrable random variables that
satisfy E[Mk+1|F(k)] = 0, ∀k ≥ 0. Because ϕk, rk, and
ϕ′

k have uniformly bounded second moments, it can be seen
that for some constant c1 > 0, ∀k ≥ 0,

E[||Mk+1||2|F(k)] ≤ c1(1 + ||ωk||2 + ||θk||2).

Now Assumptions (A1) and (A2) of (Borkar and Meyn
2000) are verified. Furthermore, Assumptions (TS) of
(Borkar and Meyn 2000) is satisfied by our conditions on
the step-size sequences αk, βk. Thus, by Theorem 2.2 of
(Borkar and Meyn 2000) we obtain that ||ωk − ω∗|| → 0
almost surely as k →∞.

Consider now the slower time scale recursion (5). Based
on the above analysis, (5) can be rewritten as

θk+1 ← θk + αk(δk − E[δk|θk])ϕk.

Let G(k) = σ(θl, l ≤ k;ϕs,ϕ
′
s, rs, s < k), k ≥ 1 be the

sigma fields generated by θ0,θl+1,ϕl,ϕ
′
l, 0 ≤ l < k. Let

Zk+1 = Yk − E[Yk|G(k)], where

Yk = (δk − E[δk|θk])ϕk.

Consequently,

E[Yk|G(k)] = E[(δk − E[δk|θk])ϕk|G(k)]
= E[δkϕk|θk]− E[E[δk|θk]ϕk]
= E[δkϕk|θk]− E[δk|θk]E[ϕk]
= Cov(δk|θk,ϕk),



where Cov(·, ·) is a covariance operator.
Thus,

Zk+1 = (δk − E[δk|θk])ϕk − Cov(δk|θk,ϕk).

It is easy to verify that Zk+1, k ≥ 0 are integrable random
variables that satisfy E[Zk+1|G(k)] = 0, ∀k ≥ 0. Also, be-
cause ϕk, rk, and ϕ′

k have uniformly bounded second mo-
ments, it can be seen that for some constant c2 > 0, ∀k ≥ 0,

E[||Zk+1||2|G(k)] ≤ c2(1 + ||θk||2).

Consider now the following ODE associated with (5):

θ̇(t) = Cov(δ|θ(t),ϕ)
= Cov(r + (γϕ′ − ϕ)⊤θ(t),ϕ)
= Cov(r,ϕ)− Cov(θ(t)⊤(ϕ− γϕ′),ϕ)
= Cov(r,ϕ)− θ(t)⊤Cov(ϕ− γϕ′,ϕ)
= Cov(r,ϕ)− Cov(ϕ− γϕ′,ϕ)⊤θ(t)
= Cov(r,ϕ)− Cov(ϕ,ϕ− γϕ′)θ(t)
= −Aθ(t) + b.

(26)

Let h⃗(θ(t)) be the driving vector field of the ODE (26).

h⃗(θ(t)) = −Aθ(t) + b.

Consider the cross-covariance matrix,

A = Cov(ϕ,ϕ− γϕ′)

= Cov(ϕ,ϕ)+Cov(ϕ−γϕ′,ϕ−γϕ′)−Cov(γϕ′,γϕ′)
2

= Cov(ϕ,ϕ)+Cov(ϕ−γϕ′,ϕ−γϕ′)−γ2Cov(ϕ′,ϕ′)
2

= (1−γ2)Cov(ϕ,ϕ)+Cov(ϕ−γϕ′,ϕ−γϕ′)
2 ,

(27)
where we eventually used Cov(ϕ′,ϕ′) = Cov(ϕ,ϕ) 1.
Note that the covariance matrix Cov(ϕ,ϕ) and Cov(ϕ −
γϕ′,ϕ−γϕ′) are semi-positive definite. Then, the matrix A
is semi-positive definite because A is linearly combined by
two positive-weighted semi-positive definite matrice (27).
Furthermore, A is nonsingular due to the assumption. Hence,
the cross-covariance matrix A is positive definite.

Therefore, θ∗ = A−1b can be seen to be the unique glob-
ally asymptotically stable equilibrium for ODE (26). Let
h⃗∞(θ) = limr→∞

h⃗(rθ)
r . Then h⃗∞(θ) = −Aθ is well-

defined. Consider now the ODE

θ̇(t) = −Aθ(t). (28)

The ODE (28) has the origin as its unique globally asymp-
totically stable equilibrium. Thus, the assumption (A1) and
(A2) are verified.

Theorem 2. (Convergence of VMTDC). In the case of off-
policy learning, consider the iterations (13), (12) and (11) of
VMTDC. Let the step-size sequences αk, ζk and βk, k ≥ 0
satisfy in this case αk, ζk, βk > 0, for all k,

∑∞
k=0 αk =∑∞

k=0 βk =
∑∞

k=0 ζk = ∞,
∑∞

k=0 α
2
k < ∞,

∑∞
k=0 ζ

2
k <

∞,
∑∞

k=0 β
2
k < ∞, and αk = o(ζk), ζk = o(βk). As-

sume that (ϕk, rk,ϕ
′
k) is an i.i.d. sequence with uniformly

1The covariance matrix Cov(ϕ′,ϕ′) is equal to the covariance
matrix Cov(ϕ,ϕ) if the initial state is re-reachable or initialized
randomly in a Markov chain for on-policy update.

A B C D E
0 0 0 0 0 1

Figure 1: Random walk.

7

1 2 3 4 5 6

Figure 2: 7-state version of Baird’s off-policy counterexam-
ple.

bounded second moments. Let A = Cov(ϕ,ϕ − γϕ′),
b = Cov(r,ϕ), and A = E[ϕϕ⊤]. Assume that A and C are
non-singular matrices. Then the parameter vector θk con-
verges with probability one to A−1b.

Theorem 3. (Convergence of VMETD). In the case of off-
policy learning, consider the iterations (18), (20) and (19)
with (4) of VMETD. Let the step-size sequences αk and βk,
k ≥ 0 satisfy in this case αk, βk > 0, for all k,

∑∞
k=0 αk =∑∞

k=0 βk = ∞,
∑∞

k=0 α
2
k < ∞,

∑∞
k=0 β

2
k < ∞, and

αk = o(βk). Assume that (ϕk, rk,ϕ
′
k) is an i.i.d. sequence

with uniformly bounded second moments, where ϕk and ϕ′
k

are sampled from the same Markov chain. Let AVMETD =
Φ⊤(F(I − γPπ) − dµd⊤µ )Φ, bVMETD = Φ⊤(F − dµf⊤)rπ .
Assume that matrix A is non-singular. Then the parameter
vector θk converges with probability one to A−1

VMETDbVMETD.

Experimental Studies
This section assesses algorithm performance through experi-
ments, which are divided into policy evaluation experiments
and control experiments.

Testing Tasks
Random-walk: as shown in Figure 1, all episodes start in
the center state, C, and proceed to left or right by one
state on each step, equiprobably. Episodes terminate either
on the extreme left or the extreme right, and get a reward
of +1 if terminate on the right, or 0 in the other case. In
this task, the true value for each state is the probability of
starting from that state and terminating on the right (Sut-
ton and Barto 2018). Thus, the true values of states from
A to E are 1

6 ,
2
6 ,

3
6 ,

4
6 ,

5
6 , respectively. The discount factor

γ = 1.0. There are three standard kinds of features for
random-walk problems: tabular feature, inverted feature and
dependent feature (Sutton et al. 2009). The feature matri-
ces corresponding to three random walks are shown in Ap-
pendix. Conduct experiments using an on-policy approach
in the Random-walk environment.

Baird’s off-policy counterexample: This task is well
known as a counterexample, in which TD diverges (Baird



Figure 3: Maze.

et al. 1995; Sutton et al. 2009). As shown in Figure 2, reward
for each transition is zero. Thus the true values are zeros
for all states and for any given policy. The behaviour policy
chooses actions represented by solid lines with a probability
of 1

7 and actions represented by dotted lines with a proba-
bility of 6

7 . The target policy is expected to choose the solid
line with more probability than 1

7 , and it chooses the solid
line with probability of 1 in this paper. The discount factor
γ = 0.99, and the feature matrix is defined in Appendix.

Maze: The learning agent should find a shortest path from
the upper left corner to the lower right corner. In each state,
there are four alternative actions: up, down, left, and right,
which takes the agent deterministically to the corresponding
neighbour state, except when a movement is blocked by an
obstacle or the edge of the maze. Rewards are−1 in all tran-
sitions until the agent reaches the goal state. The discount
factor γ = 0.99, and states s are represented by tabular fea-
tures.The maximum number of moves in the game is set to
1000.

The other three control environments: Cliff Walking,
Mountain Car, and Acrobot are selected from the gym of-
ficial website and correspond to the following versions:
“CliffWalking-v0”, “MountainCar-v0” and “Acrobot-v1”.
For specific details, please refer to the gym official website.
The maximum number of steps for the Mountain Car envi-
ronment is set to 1000, while the default settings are used for
the other two environments. In Mountain car and Acrobot,
features are generated by tile coding.

Please, refer to the Appendix for the selection of learning
rates for all experiments.

Experimental Results and Analysis
The experiment needs further elaboration.

Related Work
Difference between VMQ and R-learning
Tabular VMQ’s update formula bears some resemblance to
R-learning’s update formula. As shown in Table ??, the up-
date formulas of the two algorithms have the following dif-
ferences:
(1) The goal of the R-learning algorithm (Schwartz 1993) is
to maximize the average reward, rather than the cumulative
reward, by learning an estimate of the average reward. This
estimate m is then used to update the Q-values. On the con-
trary, the ω in the tabular VMQ update formula eventually
converges to E[δ].

(2) When γ = 1 in the tabular VMQ update formula, the R-
learning update formula is formally the same as the tabular
VMQ update formula. Therefore, R-learning algorithm can
be considered as a special case of VMQ algorithm in form.

Variance Reduction for TD Learning

The TD with centering algorithm (CTD) (Korda and La
2015) was proposed, which directly applies variance reduc-
tion techniques to the TD algorithm. The CTD algorithm
updates its parameters using the average gradient of a batch
of Markovian samples and a projection operator. Unfortu-
nately, the authors’ analysis of the CTD algorithm contains
technical errors. The VRTD algorithm (Xu et al. 2020) is
also a variance-reduced algorithm that updates its parame-
ters using the average gradient of a batch of i.i.d. samples.
The authors of VRTD provide a technically sound analysis
to demonstrate the advantages of variance reduction.

Variance Reduction for Policy Gradient
Algorithms

Policy gradient algorithms are a class of reinforcement
learning algorithms that directly optimize cumulative re-
wards. REINFORCE is a Monte Carlo algorithm that es-
timates gradients through sampling, but may have a high
variance. Baselines are introduced to reduce variance and
to accelerate learning (Sutton and Barto 2018). In Actor-
Critic, value function as a baseline and bootstrapping are
used to reduce variance, also accelerating convergence (Sut-
ton and Barto 2018). TRPO (Schulman et al. 2015) and PPO
(Schulman et al. 2017) use generalized advantage estima-
tion, which combines multi-step bootstrapping and Monte
Carlo estimation to reduce variance, making gradient esti-
mation more stable and accelerating convergence.

In Variance Minimization, the incorporation of ω .
= E[δ]

bears a striking resemblance to the use of a baseline in pol-
icy gradient methods. The introduction of a baseline in pol-
icy gradient techniques does not alter the expected value of
the update; rather, it significantly impacts the variance of
gradient estimation. The addition of ω .

= E[δ] in Variance
Minimization preserves the invariance of the optimal policy
while stabilizing gradient estimation, reducing the variance
of gradient estimation, and hastening convergence.

Conclusion and Future Work

Value-based reinforcement learning typically aims to min-
imize error as an optimization objective. As an alterna-
tion, this study proposes new objective functions: VBE and
VPBE, and derives many variance minimization algorithms,
including VMTD, VMTDC and VMETD. All algorithms
demonstrated superior performance in policy evaluation and
control experiments. Future work may include, but are not
limited to, (1) analysis of the convergence rate of VMTDC
and VMETD. (2) extensions of VBE and VPBE to multi-
step returns. (3) extensions to nonlinear approximations,
such as neural networks.
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