
A Relevant proofs
A.1 Proof of Theorem 1
Proof. The proof is based on Borkar’s Theorem for general stochastic approximation recursions with two time scales (Borkar
1997).

A new one-step linear TD solution is defined as:

0 = E[(δ − E[δ])ϕ] = −Aθ + b.

Thus, the VMTD’s solution is θVMTD = A−1b.
First, note that recursion (5) can be rewritten as

θk+1 ← θk + βkξ(k),

where
ξ(k) =

αk

βk
(δk − ωk)ϕk

Due to the settings of step-size schedule αk = o(βk), ξ(k)→ 0 almost surely as k →∞. That is the increments in iteration (4)
are uniformly larger than those in (5), thus (4) is the faster recursion. Along the faster time scale, iterations of (4) and (5) are
associated to ODEs system as follows:

θ̇(t) = 0, (A-1)

ω̇(t) = E[δt|θ(t)]− ω(t). (A-2)

Based on the ODE (A-20), θ(t) ≡ θ when viewed from the faster timescale. By the Hirsch lemma (Hirsch 1989), it follows
that ||θk − θ|| → 0 a.s. as k → ∞ for some θ that depends on the initial condition θ0 of recursion (5). Thus, the ODE pair
(A-20)-(A-21) can be written as

ω̇(t) = E[δt|θ]− ω(t). (A-3)

Consider the function h(ω) = E[δ|θ] − ω, i.e., the driving vector field of the ODE (A-22). It is easy to find that the function
h is Lipschitz with coefficient −1. Let h∞(·) be the function defined by h∞(ω) = limx→∞

h(xω)
x . Then h∞(ω) = −ω, is

well-defined. For (A-22), ω∗ = E[δ|θ] is the unique globally asymptotically stable equilibrium. For the ODE

ω̇(t) = h∞(ω(t)) = −ω(t), (A-4)

apply V⃗ (ω) = (−ω)⊤(−ω)/2 as its associated strict Liapunov function. Then, the origin of (A-23) is a globally asymptotically
stable equilibrium.

Consider now the recursion (??). Let Mk+1 = (δk−ωk)−E[(δk−ωk)|F(k)], where F(k) = σ(ωl, θl, l ≤ k;ϕs, ϕ
′
s, rs, s <

k), k ≥ 1 are the sigma fields generated by ω0, θ0, ωl+1, θl+1, ϕl, ϕ
′
l, 0 ≤ l < k. It is easy to verify that Mk+1, k ≥ 0 are

integrable random variables that satisfy E[Mk+1|F(k)] = 0, ∀k ≥ 0. Because ϕk, rk, and ϕ′
k have uniformly bounded second

moments, it can be seen that for some constant c1 > 0, ∀k ≥ 0,

E[||Mk+1||2|F(k)] ≤ c1(1 + ||ωk||2 + ||θk||2).

Now Assumptions (A1) and (A2) of (Borkar and Meyn 2000) are verified. Furthermore, Assumptions (TS) of (Borkar and
Meyn 2000) is satisfied by our conditions on the step-size sequences αk, βk. Thus, by Theorem 2.2 of (Borkar and Meyn 2000)
we obtain that ||ωk − ω∗|| → 0 almost surely as k →∞.

Consider now the slower time scale recursion (5). Based on the above analysis, (5) can be rewritten as

θk+1 ← θk + αk(δk − E[δk|θk])ϕk.

Let G(k) = σ(θl, l ≤ k;ϕs, ϕ
′
s, rs, s < k), k ≥ 1 be the sigma fields generated by θ0, θl+1, ϕl, ϕ

′
l, 0 ≤ l < k. Let

Zk+1 = Yt − E[Yt|G(k)], where
Yk = (δk − E[δk|θk])ϕk.

Consequently,
E[Yt|G(k)] = E[(δk − E[δk|θk])ϕk|G(k)]

= E[δkϕk|θk]− E[E[δk|θk]ϕk]
= E[δkϕk|θk]− E[δk|θk]E[ϕk]
= Cov(δk|θk, ϕk),

where Cov(·, ·) is a covariance operator.
Thus,

Zk+1 = (δk − E[δk|θk])ϕk − Cov(δk|θk, ϕk).



It is easy to verify that Zk+1, k ≥ 0 are integrable random variables that satisfy E[Zk+1|G(k)] = 0, ∀k ≥ 0. Also, because ϕk,
rk, and ϕ′

k have uniformly bounded second moments, it can be seen that for some constant c2 > 0, ∀k ≥ 0,

E[||Zk+1||2|G(k)] ≤ c2(1 + ||θk||2).

Consider now the following ODE associated with (5):

θ̇(t) = Cov(δ|θ(t), ϕ)
= Cov(r + (γϕ′ − ϕ)⊤θ(t), ϕ)
= Cov(r, ϕ)− Cov(θ(t)⊤(ϕ− γϕ′), ϕ)
= Cov(r, ϕ)− θ(t)⊤Cov(ϕ− γϕ′, ϕ)
= Cov(r, ϕ)− Cov(ϕ− γϕ′, ϕ)⊤θ(t)
= Cov(r, ϕ)− Cov(ϕ, ϕ− γϕ′)θ(t)
= −Aθ(t) + b.

(A-5)

Let h⃗(θ(t)) be the driving vector field of the ODE (A-24).

h⃗(θ(t)) = −Aθ(t) + b.

Consider the cross-covariance matrix,

A = Cov(ϕ, ϕ− γϕ′)

= Cov(ϕ,ϕ)+Cov(ϕ−γϕ′,ϕ−γϕ′)−Cov(γϕ′,γϕ′)
2

= Cov(ϕ,ϕ)+Cov(ϕ−γϕ′,ϕ−γϕ′)−γ2Cov(ϕ′,ϕ′)
2

= (1−γ2)Cov(ϕ,ϕ)+Cov(ϕ−γϕ′,ϕ−γϕ′)
2 ,

(A-6)

where we eventually used Cov(ϕ′, ϕ′) = Cov(ϕ, ϕ) 1. Note that the covariance matrix Cov(ϕ, ϕ) and Cov(ϕ− γϕ′, ϕ− γϕ′)
are semi-positive definite. Then, the matrix A is semi-positive definite because A is linearly combined by two positive-weighted
semi-positive definite matrice (A-6). Furthermore, A is nonsingular due to the assumption. Hence, the cross-covariance matrix
A is positive definite.

Therefore, θ∗ = A−1b can be seen to be the unique globally asymptotically stable equilibrium for ODE (A-24). Let h⃗∞(θ) =

limr→∞
h⃗(rθ)

r . Then h⃗∞(θ) = −Aθ is well-defined. Consider now the ODE

θ̇(t) = −Aθ(t). (A-7)

The ODE (A-29) has the origin as its unique globally asymptotically stable equilibrium. Thus, the assumption (A1) and (A2)
are verified.

A.2 Proof of Theorem 2
Proof. The proof is similar to that given by (Sutton et al. 2009) for TDC, but it is based on multi-time-scale stochastic approx-
imation.

For the VMTDC algorithm, a new one-step linear TD solution is defined as:

0 = E[(ϕ− γϕ′ − E[ϕ− γϕ′])ϕ⊤]E[ϕϕ⊤]−1E[(δ − E[δ])ϕ] = A⊤C−1(−Aθ + b).

The matrix A⊤C−1A is positive definite. Thus, the VMTD’s solution is θVMTDC = A−1b.
First, note that recursion (5) and (6) can be rewritten as, respectively,

θk+1 ← θk + ζkx(k),

uk+1 ← uk + βky(k),

where
x(k) =

αk

ζk
[(δk − ωk)ϕk − γϕ′

k(ϕ
⊤
k uk)],

y(k) =
ζk
βk

[δk − ωk − ϕ⊤
k uk]ϕk.

Recursion (5) can also be rewritten as
θk+1 ← θk + βkz(k),

1The covariance matrix Cov(ϕ′, ϕ′) is equal to the covariance matrix Cov(ϕ, ϕ) if the initial state is re-reachable or initialized randomly
in a Markov chain for on-policy update.



where
z(k) =

αk

βk
[(δk − ωk)ϕk − γϕ′

k(ϕ
⊤
k uk)],

Due to the settings of step-size schedule αk = o(ζk), ζk = o(βk), x(k) → 0, y(k) → 0, z(k) → 0 almost surely as k → 0.
That is that the increments in iteration (7) are uniformly larger than those in (6) and the increments in iteration (6) are uniformly
larger than those in (5), thus (7) is the fastest recursion, (6) is the second fast recursion and (5) is the slower recursion. Along
the fastest time scale, iterations of (5), (6) and (7) are associated to ODEs system as follows:

θ̇(t) = 0, (A-8)

u̇(t) = 0, (A-9)

ω̇(t) = E[δt|u(t), θ(t)]− ω(t). (A-10)
Based on the ODE (A-8) and (A-9), both θ(t) ≡ θ and u(t) ≡ u when viewed from the fastest timescale. By the Hirsch

lemma (Hirsch 1989), it follows that ||θk − θ|| → 0 a.s. as k → ∞ for some θ that depends on the initial condition θ0 of
recursion (5) and ||uk − u|| → 0 a.s. as k →∞ for some u that depends on the initial condition u0 of recursion (6). Thus, the
ODE pair (A-8)-(refomegavmtdcFastest) can be written as

ω̇(t) = E[δt|u, θ]− ω(t). (A-11)

Consider the function h(ω) = E[δ|θ, u]−ω, i.e., the driving vector field of the ODE (A-11). It is easy to find that the function
h is Lipschitz with coefficient−1. Let h∞(·) be the function defined by h∞(ω) = limr→∞

h(rω)
r . Then h∞(ω) = −ω, is well-

defined. For (A-11), ω∗ = E[δ|θ, u] is the unique globally asymptotically stable equilibrium. For the ODE

ω̇(t) = h∞(ω(t)) = −ω(t), (A-12)

apply V⃗ (ω) = (−ω)⊤(−ω)/2 as its associated strict Liapunov function. Then, the origin of (A-12) is a globally asymptotically
stable equilibrium.

Consider now the recursion (7). Let Mk+1 = (δk−ωk)−E[(δk−ωk)|F(k)], whereF(k) = σ(ωl, ul, θl, l ≤ k;ϕs, ϕ
′
s, rs, s <

k), k ≥ 1 are the sigma fields generated by ω0, u0, θ0, ωl+1, ul+1, θl+1, ϕl, ϕ
′
l, 0 ≤ l < k. It is easy to verify that Mk+1, k ≥ 0

are integrable random variables that satisfy E[Mk+1|F(k)] = 0, ∀k ≥ 0. Because ϕk, rk, and ϕ′
k have uniformly bounded

second moments, it can be seen that for some constant c1 > 0, ∀k ≥ 0,

E[||Mk+1||2|F(k)] ≤ c1(1 + ||ωk||2 + ||uk||2 + ||θk||2).

Now Assumptions (A1) and (A2) of (Borkar and Meyn 2000) are verified. Furthermore, Assumptions (TS) of (Borkar and
Meyn 2000) is satisfied by our conditions on the step-size sequences αk,ζk, βk. Thus, by Theorem 2.2 of (Borkar and Meyn
2000) we obtain that ||ωk − ω∗|| → 0 almost surely as k →∞.

Consider now the second time scale recursion (6). Based on the above analysis, (6) can be rewritten as

θ̇(t) = 0, (A-13)

u̇(t) = E[(δt − E[δt|u(t), θ(t)])ϕt|θ(t)]− Cu(t). (A-14)
The ODE (A-13) suggests that θ(t) ≡ θ (i.e., a time invariant parameter) when viewed from the second fast timescale. By the
Hirsch lemma (Hirsch 1989), it follows that ||θk − θ|| → 0 a.s. as k → ∞ for some θ that depends on the initial condition θ0
of recursion (5).

Consider now the recursion (6). Let Nk+1 = ((δk −E[δk])− ϕkϕ
⊤
k uk)−E[((δk −E[δk])− ϕkϕ

⊤
k uk)|I(k)], where I(k) =

σ(ul, θl, l ≤ k;ϕs, ϕ
′
s, rs, s < k), k ≥ 1 are the sigma fields generated by u0, θ0, ul+1, θl+1, ϕl, ϕ

′
l, 0 ≤ l < k. It is easy to

verify that Nk+1, k ≥ 0 are integrable random variables that satisfy E[Nk+1|I(k)] = 0, ∀k ≥ 0. Because ϕk, rk, and ϕ′
k have

uniformly bounded second moments, it can be seen that for some constant c2 > 0, ∀k ≥ 0,

E[||Nk+1||2|I(k)] ≤ c2(1 + ||uk||2 + ||θk||2).

Because θ(t) ≡ θ from (A-13), the ODE pair (A-13)-(A-14) can be written as

u̇(t) = E[(δt − E[δt|θ])ϕt|θ]− Cu(t). (A-15)

Now consider the function h(u) = E[δt − E[δt|θ]|θ] − Cu, i.e., the driving vector field of the ODE (A-15). For (A-15),
u∗ = C−1E[(δ − E[δ|θ])ϕ|θ] is the unique globally asymptotically stable equilibrium. Let h∞(u) = −Cu. For the ODE

u̇(t) = h∞(u(t)) = −Cu(t), (A-16)

the origin of (A-16) is a globally asymptotically stable equilibrium because C is a positive definite matrix (because it is non-
negative definite and nonsingular). Now Assumptions (A1) and (A2) of (Borkar and Meyn 2000) are verified. Furthermore,



Assumptions (TS) of (Borkar and Meyn 2000) is satisfied by our conditions on the step-size sequences αk,ζk, βk. Thus, by
Theorem 2.2 of (Borkar and Meyn 2000) we obtain that ||uk − u∗|| → 0 almost surely as k →∞.

Consider now the slower timescale recursion (5). In the light of the above, (5) can be rewritten as

θk+1 ← θk + αk(δk − E[δk|θk])ϕk − αkγϕ
′
k(ϕ

⊤
k C−1E[(δk − E[δk|θk])ϕ|θk]). (A-17)

Let G(k) = σ(θl, l ≤ k;ϕs, ϕ
′
s, rs, s < k), k ≥ 1 be the sigma fields generated by θ0, θl+1, ϕl, ϕ

′
l, 0 ≤ l < k. Let

Zk+1 = ((δk − E[δk|θk])ϕk − γϕ′
kϕ

⊤
k C−1E[(δk − E[δk|θk])ϕ|θk])

−E[((δk − E[δk|θk])ϕk − γϕ′
kϕ

⊤
k C−1E[(δk − E[δk|θk])ϕ|θk])|G(k)]

= ((δk − E[δk|θk])ϕk − γϕ′
kϕ

⊤
k C−1E[(δk − E[δk|θk])ϕ|θk])

−E[(δk − E[δk|θk])ϕk|θk]− γE[ϕ′ϕ⊤]C−1E[(δk − E[δk|θk])ϕk|θk].

It is easy to see that Zk, k ≥ 0 are integrable random variables and E[Zk+1|G(k)] = 0, ∀k ≥ 0. Further,

E[||Zk+1||2|G(k)] ≤ c3(1 + ||θk||2), k ≥ 0

for some constant c3 ≥ 0, again beacuse ϕk, rk, and ϕ′
k have uniformly bounded second moments, it can be seen that for some

constant.
Consider now the following ODE associated with (5):

θ̇(t) = (I− E[γϕ′ϕ⊤]C−1)E[(δ − E[δ|θ(t)])ϕ|θ(t)]. (A-18)

Let
h⃗(θ(t)) = (I− E[γϕ′ϕ⊤]C−1)E[(δ − E[δ|θ(t)])ϕ|θ(t)]

= (C− E[γϕ′ϕ⊤])C−1E[(δ − E[δ|θ(t)])ϕ|θ(t)]
= (E[ϕϕ⊤]− E[γϕ′ϕ⊤])C−1E[(δ − E[δ|θ(t)])ϕ|θ(t)]
= A⊤C−1(−Aθ(t) + b),

because E[(δ − E[δ|θ(t)])ϕ|θ(t)] = −Aθ(t) + b, where A = Cov(ϕ, ϕ− γϕ′), b = Cov(r, ϕ), and C = E[ϕϕ⊤]

Therefore, θ∗ = A−1b can be seen to be the unique globally asymptotically stable equilibrium for ODE (A-18). Let h⃗∞(θ) =

limr→∞
h⃗(rθ)

r . Then h⃗∞(θ) = −A⊤C−1Aθ is well-defined. Consider now the ODE

θ̇(t) = −A⊤C−1Aθ(t). (A-19)

Because C−1 is positive definite and A has full rank (as it is nonsingular by assumption), the matrix A⊤C−1A is also positive
definite. The ODE (A-19) has the origin as its unique globally asymptotically stable equilibrium. Thus, the assumption (A1)
and (A2) are verified.

The proof is given above. In the fastest time scale, the parameter w converges to E[δ|uk, θk]. In the second fast time scale,
the parameter u converges to C−1E[(δ − E[δ|θk])ϕ|θk]. In the slower time scale, the parameter θ converges to A−1b.

A.3 Proof of Theorem 2
Proof. The proof of VMETD’s convergence is also based on Borkar’s Theorem for general stochastic approximation recursions
with two time scales (Borkar 1997).

The VMTD’s solution is θVMETD = A−1
VMETDbVMETD.

First, note that recursion (19) can be rewritten as

θk+1 ← θk + βkξ(k),

where
ξ(k) =

αk

βk
(Fkρkδk − ωk+1)ϕk

Due to the settings of step-size schedule αk = o(βk), ξ(k) → 0 almost surely as k → ∞. That is the increments in iteration
(13) are uniformly larger than those in (12), thus (13) is the faster recursion. Along the faster time scale, iterations of (12) and
(13) are associated to ODEs system as follows:

θ̇(t) = 0, (A-20)
ω̇(t) = Eµ[Ftρtδt|θ(t)]− ω(t). (A-21)

Based on the ODE (A-20), θ(t) ≡ θ when viewed from the faster timescale. By the Hirsch lemma (Hirsch 1989), it follows
that ||θk − θ|| → 0 a.s. as k → ∞ for some θ that depends on the initial condition θ0 of recursion (12). Thus, the ODE pair
(A-20)-(A-21) can be written as

ω̇(t) = Eµ[Ftρtδt|θ]− ω(t). (A-22)



Consider the function h(ω) = Eµ[Fρδ|θ]−ω, i.e., the driving vector field of the ODE (A-22). It is easy to find that the function
h is Lipschitz with coefficient −1. Let h∞(·) be the function defined by h∞(ω) = limx→∞

h(xω)
x . Then h∞(ω) = −ω, is

well-defined. For (A-22), ω∗ = Eµ[Fρδ|θ] is the unique globally asymptotically stable equilibrium. For the ODE

ω̇(t) = h∞(ω(t)) = −ω(t), (A-23)

apply V⃗ (ω) = (−ω)⊤(−ω)/2 as its associated strict Liapunov function. Then, the origin of (A-23) is a globally asymptotically
stable equilibrium.

Consider now the recursion (13). Let Mk+1 = (Fkρkδk − ωk) − Eµ[(Fkρkδk − ωk)|F(k)], where F(k) = σ(ωl, θl, l ≤
k;ϕs, ϕ

′
s, rs, s < k), k ≥ 1 are the sigma fields generated by ω0, θ0, ωl+1, θl+1, ϕl, ϕ

′
l, 0 ≤ l < k. It is easy to verify that

Mk+1, k ≥ 0 are integrable random variables that satisfy E[Mk+1|F(k)] = 0, ∀k ≥ 0. Because ϕk, rk, and ϕ′
k have uniformly

bounded second moments, it can be seen that for some constant c1 > 0, ∀k ≥ 0,

E[||Mk+1||2|F(k)] ≤ c1(1 + ||ωk||2 + ||θk||2).
Now Assumptions (A1) and (A2) of (Borkar and Meyn 2000) are verified. Furthermore, Assumptions (TS) of (Borkar and

Meyn 2000) is satisfied by our conditions on the step-size sequences αk, βk. Thus, by Theorem 2.2 of (Borkar and Meyn 2000)
we obtain that ||ωk − ω∗|| → 0 almost surely as k →∞.

Consider now the slower time scale recursion (12). Based on the above analysis, (12) can be rewritten as

θk+1 ← θk + αk(Fkρkδk − ωk)ϕk − αkωk+1ϕk

= θk + αk(Fkρkδk − Eµ[Fkρkδk|θk])ϕk

= θk + αkFkρk(Rk+1 + γθ⊤k ϕk+1 − θ⊤k ϕk)ϕk − αkEµ[Fkρkδk]ϕk

= θk + αk{(FkρkRk+1 − Eµ[FkρkRk+1])ϕk︸ ︷︷ ︸
bVMETD,k

− (Fkρkϕk(ϕk − γϕk+1)
⊤ − ϕkEµ[Fkρk(ϕk − γϕk+1)]

⊤)︸ ︷︷ ︸
AVMETD,k

θk}

Let G(k) = σ(θl, l ≤ k;ϕs, ϕ
′
s, rs, s < k), k ≥ 1 be the sigma fields generated by θ0, θl+1, ϕl, ϕ

′
l, 0 ≤ l < k. Let

Zk+1 = Yk − E[Yk|G(k)], where
Yk = (Fkρkδk − Eµ[Fkρkδk|θk])ϕk.

Consequently,
Eµ[Yk|G(k)] = Eµ[(Fkρkδk − Eµ[Fkρkδk|θk])ϕk|G(k)]

= Eµ[Fkρkδkϕk|θk]− Eµ[Eµ[Fkρkδk|θk]ϕk]
= Eµ[Fkρkδkϕk|θk]− Eµ[Fkρkδk|θk]Eµ[ϕk]
= Cov(Fkρkδk|θk, ϕk),

where Cov(·, ·) is a covariance operator.
Thus,

Zk+1 = (Fkρkδk − E[δk|θk])ϕk − Cov(Fkρkδk|θk, ϕk).

It is easy to verify that Zk+1, k ≥ 0 are integrable random variables that satisfy E[Zk+1|G(k)] = 0, ∀k ≥ 0. Also, because ϕk,
rk, and ϕ′

k have uniformly bounded second moments, it can be seen that for some constant c2 > 0, ∀k ≥ 0,

E[||Zk+1||2|G(k)] ≤ c2(1 + ||θk||2).
Consider now the following ODE associated with (12):

θ̇(t) = −AVMETDθ(t) + bVMETD. (A-24)

AVMETD = lim
k→∞

E[AVMETD,k]

= lim
k→∞

Eµ[Fkρkϕk(ϕk − γϕk+1)
⊤]− lim

k→∞
Eµ[ϕk]Eµ[Fkρk(ϕk − γϕk+1)]

⊤

= lim
k→∞

Eµ[ϕkFkρk(ϕk − γϕk+1)
⊤]− lim

k→∞
Eµ[ϕk]Eµ[Fkρk(ϕk − γϕk+1)]

⊤

= lim
k→∞

Eµ[ϕkFkρk(ϕk − γϕk+1)
⊤]− lim

k→∞
Eµ[ϕk] lim

k→∞
Eµ[Fkρk(ϕk − γϕk+1)]

⊤

=
∑
s

f(s)ϕ(s)(ϕ(s)− γ
∑
s′

[Pπ]ss′ϕ(s
′))⊤ −

∑
s

dµ(s)ϕ(s) ∗
∑
s

f(s)(ϕ(s)− γ
∑
s′

[Pπ]ss′ϕ(s
′))⊤

= Φ⊤F(I− γPπ)Φ− Φ⊤dµf⊤(I− γPµ)Φ

= Φ⊤(F− dµf⊤)(I− γPπ)Φ

= Φ⊤(F(I− γPπ)− dµf⊤(I− γPπ))Φ

= Φ⊤(F(I− γPπ)− dµd⊤
µ )Φ

(A-25)



bVMETD = lim
k→∞

E[bVMETD,k]

= lim
k→∞

Eµ[FkρkRk+1ϕk]− lim
k→∞

Eµ[ϕk]Eµ[FkρkRk+1]

= lim
k→∞

Eµ[ϕkFkρkRk+1]− lim
k→∞

Eµ[ϕk]Eµ[ϕk]Eµ[FkρkRk+1]

= lim
k→∞

Eµ[ϕkFkρkRk+1]− lim
k→∞

Eµ[ϕk] lim
k→∞

Eµ[FkρkRk+1]

=
∑
s

f(s)ϕ(s)rπ −
∑
s

dµ(s)ϕ(s) ∗
∑
s

f(s)rπ

= Φ⊤(F− dµf⊤)rπ

(A-26)

Let h⃗(θ(t)) be the driving vector field of the ODE (A-24).

h⃗(θ(t)) = −AVMETDθ(t) + bVMETD.

An Φ⊤XΦ matrix of this form will be positive definite whenever the matrix X is positive definite. Any matrix X is positive
definite if and only if the symmetric matrix S = X + X⊤ is positive definite. Any symmetric real matrix S is positive definite
if the absolute values of its diagonal entries are greater than the sum of the absolute values of the corresponding off-diagonal
entries(Sutton, Mahmood, and White 2016).

(F(I− γPπ)− dµd⊤
µ )1 = F(I− γPπ)1− dµd⊤

µ 1

= F(1− γPπ1)− dµd⊤
µ 1

= (1− γ)F1− dµd⊤
µ 1

= (1− γ)f− dµd⊤
µ 1

= (1− γ)f− dµ

= (1− γ)(I− γP⊤
π )

−1dµ − dµ

= (1− γ)[(I− γP⊤
π )

−1 − I]dµ

= (1− γ)[

∞∑
t=0

(γP⊤
π )

t − I]dµ

= (1− γ)[

∞∑
t=1

(γP⊤
π )

t]dµ > 0

(A-27)

1⊤(F(I− γPπ)− dµd⊤
µ ) = 1⊤F(I− γPπ)− 1⊤dµd⊤

µ

= d⊤
µ − 1⊤dµd⊤

µ

= d⊤
µ − d⊤

µ

= 0

(A-28)

(A-27) and (A-28) show that the matrix F(I − γPπ) − dµd⊤
µ of diagonal entries are positive and its off-diagonal entries are

negative. So its each row sum plus the corresponding column sum is positive. So AVMETD is positive definite.
Therefore, θ∗ = A−1

VMETDbVMETD can be seen to be the unique globally asymptotically stable equilibrium for ODE (A-24).

Let h⃗∞(θ) = limr→∞
h⃗(rθ)

r . Then h⃗∞(θ) = −AVMETDθ is well-defined. Consider now the ODE

θ̇(t) = −AVMETDθ(t). (A-29)

The ODE (A-29) has the origin as its unique globally asymptotically stable equilibrium. Thus, the assumption (A1) and (A2)
are verified.

B Experimental details
2-state version of Baird’s off-policy counterexample: All learning rates follow linear learning rate decay. For TD algorithm,
αk

ωk
= 4 and α0 = 0.1. For TDC algorithm, αk

ζk
= 5 and α0 = 0.1. For VMTDC algorithm, αk

ζk
= 5, αk

ωk
= 4,and α0 = 0.1. For

VMTD algorithm, αk

ωk
= 4 and α0 = 0.1.

2-state version of Baird’s off-policy counterexample: All learning rates follow linear learning rate decay. For TD algorithm,
αk

ωk
= 4 and α0 = 0.1. For TDC algorithm, αk

ζk
= 5 and α0 = 0.1.For ETD algorithm, α0 = 0.1. For VMTDC algorithm,

αk

ζk
= 5, αk

ωk
= 4,and α0 = 0.1.For VMETD algorithm, αk

ωk
= 4 and α0 = 0.1. For VMTD algorithm, αk

ωk
= 4 and α0 = 0.1.



For all policy evaluation experiments, each experiment is independently run 100 times.
For the four control experiments: The learning rates for each algorithm in all experiments are shown in Table 1. For all control

experiments, each experiment is independently run 50 times.

Table 1: Learning rates (lr) of four control experiments.

algorithms(lr)
envs Maze Cliff walking Mountain Car Acrobot

Sarsa(α) 0.1 0.1 0.1 0.1
GQ(α, ζ) 0.1, 0.003 0.1, 0.004 0.1, 0.01 0.1, 0.01

EQ(α) 0.006 0.005 0.001 0.0005
VMSarsa(α, β) 0.1, 0.001 0.1, 1e-4 0.1, 1e-4 0.1, 1e-4
VMGQ(α, ζ, β) 0.1, 0.001, 0.001 0.1, 0.005, 1e-4 0.1, 5e-4, 1e-4 0.1, 5e-4, 1e-4

VMEQ(α, β) 0.001, 0.0005 0.005, 0.0001 0.001, 0.0001 0.0005, 0.0001
Q-learning(α) 0.1 0.1 0.1 0.1
VMQ(α, β) 0.1, 0.001 0.1, 1e-4 0.1, 1e-4 0.1, 1e-4
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