A Relevant proofs
A.1 Proof of Theorem 1
Proof. The proof is based on Borkar’s Theorem for general stochastic approximation recursions with two time scales (Borkar

1997).
A new one-step linear TD solution is defined as:

0=E[(6 —E[5])¢] = — A0 +b.

Thus, the VMTD’s solution is fyymp = A~ 1b.
First, note that recursion (5) can be rewritten as

Or41 < O + Bré(k),

where
o

k
§(k) = == (0k — wi) P
Br
Due to the settings of step-size schedule o, = o(8k), (k) — 0 almost surely as k — oo. That is the increments in iteration (4)
are uniformly larger than those in (5), thus (4) is the faster recursion. Along the faster time scale, iterations of (4) and (5) are
associated to ODEs system as follows:

o(t) =0, (A-1)
w(t) = E[6:|6(2)] — w(?)- (A-2)
Based on the ODE (A-20), 6(t) = 6 when viewed from the faster timescale. By the Hirsch lemma (Hirsch 1989), it follows

that ||0; — 0]| — 0 a.s. as k — oo for some 6 that depends on the initial condition 6y of recursion (5). Thus, the ODE pair
(A-20)-(A-21) can be written as

w(t) = E[6¢]0] — w(t). (A-3)

Consider the function h(w) = E[d]0] — w, i.e., the driving vector field of the ODE (A-22). It is easy to find that the function

h is Lipschitz with coefficient —1. Let hs () be the function defined by heo(w) = lim,_ o %w) Then hy (W) = —w, is
well-defined. For (A-22), w* = E[)|6] is the unique globally asymptotically stable equilibrium. For the ODE

W(t) = hoo(w(t)) = —w(?), (A-4)

apply V(w) = (—w) " (~w)/2 as its associated strict Liapunov function. Then, the origin of (A-23) is a globally asymptotically
stable equilibrium.

Consider now the recursion (??). Let My11 = (6 —wg) — E[(0r — wg) | F (k)], where F (k) = o(wy, 0,1 < k; ¢s, @y 1s, 8 <
k), k > 1 are the sigma fields generated by wo, 0o, wit1, 0141, ¢1, qSE, 0 <1 < k. It is easy to verify that M1,k > 0 are
integrable random variables that satisfy E[M},11|F (k)] = 0, Vk > 0. Because ¢y, 71, and ¢, have uniformly bounded second
moments, it can be seen that for some constant ¢; > 0, Vk > 0,

B[ M1 |P[F (k)] < ex(1+ [wr]* + [10x]).

Now Assumptions (A1) and (A2) of (Borkar and Meyn 2000) are verified. Furthermore, Assumptions (TS) of (Borkar and
Meyn 2000) is satisfied by our conditions on the step-size sequences oy, Bx. Thus, by Theorem 2.2 of (Borkar and Meyn 2000)
we obtain that ||w;, — w*|| — 0 almost surely as k — occ.

Consider now the slower time scale recursion (5). Based on the above analysis, (5) can be rewritten as

9k+1 «— 0 + Oék((sk — E[6k|9k])¢k-

Let G(k) = o(6;,1 < k;¢s,¢),75,5 < k), k > 1 be the sigma fields generated by 6y, 0,41, ¢, ¢;, 0 < I < k. Let
Zpy1 =Y, — E[Y|G(k)], where

Yi = (0 — E[0x|0k]) Pr-
Consequently,
E[Y:|G(k)] E[(0x — E[0k|0k]) 01| G (K)]
E[0x¢k|0k] — E[E[0k |0r] o]
E[0k¢x|0k] — E[0k|0k|E[dx]
Cov (x|, dx),

where Cov(+,-) is a covariance operator.
Thus,

Zis1r = (0k — E[0k|0k])dr — Cov(k|Ok, Pr)-



It is easy to verify that Z1, k > 0 are integrable random variables that satisfy E[Z;1|G(k)] = 0, Vk
r, and gb;c have uniformly bounded second moments, it can be seen that for some constant co > 0 Vk;

E[|| Z1+1]*1G (k)] < ea(1+ [16x] ).
Consider now the following ODE associated with (5):

> 0. Also, because ¢y,
>0

6(t) = Cov(s19(t),¢)
= COV(T+(7¢’—¢)T9(75) ¢)
= Cov(r,¢) — Cov(6(t) (¢ — 7v¢'), ¢)
= Cov(r,¢) —6(t)  Cov(¢ —7¢',9) (A-3)
= Cov(r,¢) — Cov(é —7¢',¢) " 0(t)
= Cov(r,¢) — Cov(e, ¢ —7¢')(1)
— —A8(t) + .

Let 1(A(t)) be the driving vector field of the ODE (A-24).
h(6(t)) = —A6(t) + b
Consider the cross-covariance matrix,

A = Cov(¢, ¢ —7¢)
_  Cov(¢,¢)+Cov(¢p—v¢',¢—=7¢")~Cov(v¢',7¢")
/2 ’ 2 ol (A-6)
—  Cov(¢,0)+Cov(¢—v¢",¢—v¢")—7"Cov(¢',¢")

- 2
(1=~v*)Cov(,6)+Cov(p—v¢ ,¢—v4¢)
2 )

where we eventually used Cov(¢’, ¢') = Cov(¢, ¢) !. Note that the covariance matrix Cov(¢, ¢) and Cov(¢ — v¢', ¢ — y¢')
are semi-positive definite. Then, the matrix A is semi-positive definite because A is linearly combined by two positive-weighted
semi-positive definite matrice (A-6). Furthermore, A is nonsingular due to the assumption. Hence, the cross-covariance matrix
A is positive definite.

Therefore, 0* = A~'b can be seen to be the unique globally asymptotically stable equilibrium for ODE (A-24). Let Poo (0) =
lim, oo 2 (:9). Then fzoo(ﬁ) = — A0 is well-defined. Consider now the ODE

0(t) = —Ad(t). (A-7)

The ODE (A-29) has the origin as its unique globally asymptotically stable equilibrium. Thus, the assumption (A1) and (A2)
are verified. O

A.2 Proof of Theorem 2

Proof. The proof is similar to that given by (Sutton et al. 2009) for TDC, but it is based on multi-time-scale stochastic approx-
imation.
For the VMTDC algorithm, a new one-step linear TD solution is defined as:

=E[(¢ —7¢' —E[p —1¢')¢|E[¢d ] "E[(6 — E[6])¢] = ATCT'(~A0 + b).

The matrix A " C™'A is positive definite. Thus, the VMTD’s solution is fymrpc = A~ b
First, note that recursion (5) and (6) can be rewritten as, respectively,

041 < O + Goa(k),

U1 < ug + Bry(k),
where

C 21 — wr)br — 1k (D w)l,
k

) = 5

B [0k — wi — ¢ ] Ps.

Recursion (5) can also be rewritten as
Ory1 < Or + Brz(k),

!The covariance matrix Cov(¢', ¢') is equal to the covariance matrix Cov (¢, ¢) if the initial state is re-reachable or initialized randomly
in a Markov chain for on-policy update.



where an
2(k) = 50 — wr)dk =104 (d5 w)],

Due to the settings of step-size schedule o, = 0((x), x = 0(Bk), z(k) — 0, y(k) — 0, z(k) — 0 almost surely as & — 0.
That is that the increments in iteration (7) are uniformly larger than those in (6) and the increments in iteration (6) are uniformly
larger than those in (5), thus (7) is the fastest recursion, (6) is the second fast recursion and (5) is the slower recursion. Along
the fastest time scale, iterations of (5), (6) and (7) are associated to ODEs system as follows:

0(t) =0, (A-8)
a(t) =0, (A-9)
&(t) = ElsJu(t), 6(1)] — wit). (A-10)

Based on the ODE (A-8) and (A-9), both 6(¢) = 6 and u(t) = w when viewed from the fastest timescale. By the Hirsch
lemma (Hirsch 1989), it follows that ||0x — ]| — 0 a.s. as k — oo for some 6 that depends on the initial condition 6y of
recursion (5) and ||uy, — u|| — 0 a.s. as k — oo for some  that depends on the initial condition u of recursion (6). Thus, the
ODE pair (A-8)-(refomegavmtdcFastest) can be written as

o) = E[6|u, 0] — w(t). (A-11)

Consider the function h(w) = E[§], u] — w, i.e., the driving vector field of the ODE (A-11). It is easy to find that the function

h is Lipschitz with coefficient —1. Let ho (+) be the function defined by hoo (w) = lim, o0 M Then hoo (W) = —w, is well-
defined. For (A-11), w* = E[4]6, u] is the unique globally asymptotically stable equilibrium. For the ODE

W(t) = hoo(w(t)) = —w(t), (A-12)

apply V(w) = (—w) T (—w)/2 as its associated strict Liapunov function. Then, the origin of (A-12) is a globally asymptotically
stable equilibrium.

Consider now the recursion (7). Let My, 11 = (0 —wi) —E[(dk—wi )| F (k)], where F (k) = o (wy, ug, 01,1 < k; ¢, ¢y 15,8 <
k), k > 1 are the sigma fields generated by wo, uo, 0o, wit1, Wi+1, 0141, 1, @), 0 < 1 < k. It is easy to verify that M1,k > 0
are integrable random variables that satisfy E[My41|F (k)] = 0, Vk > 0. Because ¢y, 7%, and ¢}, have uniformly bounded
second moments, it can be seen that for some constant ¢; > 0, Vk > 0,

E[l| Mg || F (k)] < ex(1+ [|wnl]* + ul* + 10x]1%).

Now Assumptions (A1) and (A2) of (Borkar and Meyn 2000) are verified. Furthermore, Assumptions (TS) of (Borkar and
Meyn 2000) is satisfied by our conditions on the step-size sequences ay,(x, 5. Thus, by Theorem 2.2 of (Borkar and Meyn
2000) we obtain that ||wy, — w*|| — 0 almost surely as k — oo.

Consider now the second time scale recursion (6). Based on the above analysis, (6) can be rewritten as

0() = 0, (A-13)
u(t) = E[(d: — E[6¢[u(t), 0()])¢:|0(¢)] — Cu(?). (A-14)

The ODE (A-13) suggests that (¢t) = 6 (i.e., a time invariant parameter) when viewed from the second fast timescale. By the
Hirsch lemma (Hirsch 1989), it follows that ||0; — 6|| — 0 a.s. as k — oo for some 6 that depends on the initial condition 6y
of recursion (5).

Consider now the recursion (6). Let N1 = ((6; — E[0x]) — drd) ur) — E[((6x — E[6k]) — dx ) ur)|Z(k)], where Z(k) =
o(u, 01,1 < k;¢s, ¢, 5,8 < k), k > 1 are the sigma fields generated by ug, 6o, i1, 0141, ¢1,¢;, 0 < | < k. It is easy to
verify that Ny41,k > 0 are integrable random variables that satisfy E[Ny11|Z(k)] = 0, Vk > 0. Because ¢y, i, and ¢}, have
uniformly bounded second moments, it can be seen that for some constant co > 0, Vk > 0,

E[|| N1 2Z(k)] < (1 + [Jur|* + [6x]]*)-
Because 6(t) = 6 from (A-13), the ODE pair (A-13)-(A-14) can be written as
a(t) = E[(8 — E[5/6])ér]6] — Cult). (A-15)

Now consider the function h(u) = E[6; — E[6:|6]|0] — Cu, i.e., the driving vector field of the ODE (A-15). For (A-15),
u* = C'E[(6 — E[5]6])#|6] is the unique globally asymptotically stable equilibrium. Let ho (1) = —Cu. For the ODE

(t) = heo(u(t)) = —Cul(t), (A-16)

the origin of (A-16) is a globally asymptotically stable equilibrium because C is a positive definite matrix (because it is non-
negative definite and nonsingular). Now Assumptions (A1) and (A2) of (Borkar and Meyn 2000) are verified. Furthermore,



Assumptions (TS) of (Borkar and Meyn 2000) is satisfied by our conditions on the step-size sequences ay,(x, Ox. Thus, by
Theorem 2.2 of (Borkar and Meyn 2000) we obtain that ||u — v*|| — 0 almost surely as k — oo.
Consider now the slower timescale recursion (5). In the light of the above, (5) can be rewritten as

Ors1 < Ok + (S — E[0x]0k]) bk — vt (6 € E[(6 — E[0k]0k])9|0k]). (A-17)
Let G(k) = 0(6;,1 < k; ¢s, ¢, 7s, s < k), k > 1 be the sigma fields generated by 6y, 0,11, &1, ¢}, 0 <1 < k. Let
Ziyr = ((0k — E[0k|0k]) bk — v} 04 C'E[(5x — E[6k|0k])$|0k])
—E[((85 — E[0%|0k])d1. — 70,0 CE[(5), — E[0k|0k])0|04])|G (k)]

((0k — E[0k|0k]) b1 — ¥} 04 C ' E[(5 — E[6k|0k])6|0k])
~E[(5x — E[0x|0x])dx|0k] — VE[¢' ¢ T |CT E[(r — E[0k|0k]) | O]-

It is easy to see that Zj, k > 0 are integrable random variables and E[Z;1|G (k)] = 0, Yk > 0. Further,
E[|Zk+1|*1G(k)] < es(1 + [|6x]*), k > 0

for some constant cg > 0, again beacuse ¢, 71, and ¢§€ have uniformly bounded second moments, it can be seen that for some
constant.
Consider now the following ODE associated with (5):

6(t) = (1~ Efyg'9TICEL( — E[516(1)])l6(1)] (A-18)

Let .
h(6(1))

(I-E[y¢'¢"]CE[(8 —E[36(1)])¢l6(t)]
(C —E[y¢'¢ ")C'E[(s — E[5]6(¢)])¢l6(t)]
(El¢d '] — Ely¢'¢ T))CTE[(S — E[5]6(1)])0|6(2)]
= ATCTH=AI(t) + D),
because E[(5 — E[5]0(t)])#|0(t)] = —Ab(t) + b, where A = Cov (¢, ¢ — y¢'), b = Cov(r,¢), and C = E[p¢ ]
Theref(zre, 6* = A~'b can be seen to be the unique globally asymptotically stable equilibrium for ODE (A-18). Let oo 0) =
lim, oo @. Then hoo (0) = —A T C7'A6 is well-defined. Consider now the ODE

0(t) = —ATCTIA(2). (A-19)

Because C ! is positive definite and A has full rank (as it is nonsingular by assumption), the matrix ATC 'Aisalso positive
definite. The ODE (A-19) has the origin as its unique globally asymptotically stable equilibrium. Thus, the assumption (A1)
and (A2) are verified.

The proof is given above. In the fastest time scale, the parameter w converges to E[0|uy, 0x]. In the second fast time scale,

the parameter u converges to C~"E[(§ — E[5|0x])¢|6]. In the slower time scale, the parameter 6 converges to A~ 'b. O

A.3 Proof of Theorem 2

Proof. The proof of VMETD’s convergence is also based on Borkar’s Theorem for general stochastic approximation recursions
with two time scales (Borkar 1997).

The VMTD’s solution is Oyyerp = A;hl/[ETDbVMETD~

First, note that recursion (19) can be rewritten as

Ory1 < O + Bré(k),

where o
§(k) = F:(kakék — W1) Pk

Due to the settings of step-size schedule o, = o(8y), (k) — 0 almost surely as k& — oo. That is the increments in iteration
(13) are uniformly larger than those in (12), thus (13) is the faster recursion. Along the faster time scale, iterations of (12) and
(13) are associated to ODEs system as follows:

0(t) =0, (A-20)

Based on the ODE (A-20), 6(t) = 6 when viewed from the faster timescale. By the Hirsch lemma (Hirsch 1989), it follows

that ||0, — ]| — 0 a.s. as k — oo for some 6 that depends on the initial condition 6 of recursion (12). Thus, the ODE pair
(A-20)-(A-21) can be written as

() = E,[Fipe8l6] — w(?). (A-22)



Consider the function h(w) = E,[Fpd|6] —w, i.e., the driving vector field of the ODE (A-22). It is easy to find that the function

h is Lipschitz with coefficient —1. Let /i, (-) be the function defined by oo (w) = limg 00 &), Then hoo (w) = —w, is
well-defined. For (A-22), w* = E,[Fpd|6] is the unique globally asymptotically stable equilibrium. For the ODE
W(t) = hoo(w(t)) = —w(t), (A-23)

apply V (w) = (—w) T (—w)/2 as its associated strict Liapunov function. Then, the origin of (A-23) is a globally asymptotically
stable equilibrium.

Consider now the recursion (13). Let My 11 = (Fipror — wi) — Eu[(Frpror — wi)|F(k)], where F(k) = o(w;, 0,1 <
k; ¢, @, rs,s < k), k > 1 are the sigma fields generated by wo, 0, wit1, 6141, ¢1, @), 0 < I < k. It is easy to verify that
M1, k > 0 are integrable random variables that satisfy E[M;.1|F (k)] = 0, Yk > 0. Because ¢y, 7, and ¢}, have uniformly
bounded second moments, it can be seen that for some constant ¢; > 0, Vk > 0,

E[||Mi41|PIF(R)] < ex (@ + llwnl* + [1651)-

Now Assumptions (A1) and (A2) of (Borkar and Meyn 2000) are verified. Furthermore, Assumptions (TS) of (Borkar and
Meyn 2000) is satisfied by our conditions on the step-size sequences ay, Bx. Thus, by Theorem 2.2 of (Borkar and Meyn 2000)
we obtain that ||wy — w*|| — 0 almost surely as k — oco.

Consider now the slower time scale recursion (12). Based on the above analysis, (12) can be rewritten as

Ort1 Ok + ar(Frprde — wi) Ok — QpWit10k
=0 + o (Fipror — Eu[Frprdr|Ok)) o
= Ok + i Fupe(Riy1 + 705 dns1 — 05 0k) b1 — il [FopiOi]
= 0k + e { (Fupr Riv1 — EuFupe Ris1]) bk — (Frprdn(dr — vor+1) | — OBpulFrpr(dr — vor+1)] ") Ok}

DVMETD, k AVMETD, k

Let G(k) = o(6;,1 < k;¢s, 0,75, < k), k > 1 be the sigma fields generated by 6y, 0,41, ¢, ¢;, 0 < I < k. Let
Zygy1 = Yy — E[Yy|G(E)], where

Y. = (kak(sk - EH[FkPk(Sklek])(bk'
Consequently,
E,[Yx|G(k)] wl(Frprdr — Eu[Frprdr|0k]) x| G (k)]
1 [FreprOkdn|Ok) — BBy [Fr ik |0k or]
M[kakékékwk] - EM[FkPk(Sk'ek]EM[(bk]

E
E
E
Cov(Fy.prok |0k, k),

where Cov(+, -) is a covariance operator.

Thus,
Zit1 = (Fepror — E[0k|0k])dr — Cov(Fprdr|Ok, di)-
It is easy to verify that Z 1,k > 0 are integrable random variables that satisfy E[Z;1|G (k)] = 0, Vk > 0. Also, because ¢y,
), and ¢}, have uniformly bounded second moments, it can be seen that for some constant co > 0, Vk > 0,

E[||Zk11|PIG(R)] < ea(1 + [[6k]%)-
Consider now the following ODE associated with (12):
0(t) = —Avmerpd(t) + bymerp- (A-24)

AvMETD = kli_{IOlo E[AvMmETD, £

= lim. E,[Fyprdr(dr — vPrt1) | — Jim E, [Ok]Ew[Frpr(dr — vdrs1)] "

Jim E,[éxFrpr(dp — vor41) '] — Jim E, (06| Ew[Frpr (b — vbrs1)] "

= khjfgo E. 6k Frpr(dr — k1) ') — klggo E.[¢x] klgfolo Eu[Frpr(or — vér+1)] "

ST 1)6()(0(5) = 7Y [Palawrd()) T =D du(s)p(s) = > F(5)(3(s) =7 D _[Palewp(s))) T (A23)
=3 FI—P,)®—&"d,f (1-+P,)®

=3 (F—d,f")(1-~P,)d

=& (F(I—Px) —duf' (I—7P;))®

=0T (FI-~P;)—d.d])®



bymETD = klirglo E[bvmerp, k]

= klgrolo E,.[FiprRi+101] — kli_{I;O E, (0] E.[Frpr Riy1]
= lim E,[¢ppFrprRiv1] — lim E,[ox]E,[or]E, [Fipr Rii1]

k—o0 k—o00 A 26)
= lim E,L[QSkaPkRkH} - 1iH1 Eu[‘bk] klgglo B [FrprRyy1] (A-

= Zf Zd ) ¥ > f(s)ra

= <I>T (F—d,f")r,
Let 22(A(t)) be the driving vector field of the ODE (A-24).

h(0(t)) = —Avmerpf(t) + bymerp-
An ® T X® matrix of this form will be positive definite whenever the matrix X is positive definite. Any matrix X is positive
definite if and only if the symmetric matrix S = X + X is positive definite. Any symmetric real matrix S is positive definite

if the absolute values of its diagonal entries are greater than the sum of the absolute values of the corresponding off-diagonal
entries(Sutton, Mahmood, and White 2016).

(F(I—~P;) —d,d, )1 =F(I—~P,)1—d,d,1
=F(1-9P;1)—d,d1
=(1-7)F1-d,d;1
= (1-y)f-d,d,1
=1 -y)f- d,
=(1 _’Y)(I_'YPI)ildu —d, (A-27)
=(1-y[@-p;)"" -4,
= 1=y _(P))' -1,
t=0
= (1= _(P1)]d, >0

1" (FI—P;) —d,d;) =1"FI—~P;) —1'd,d]
_aT T T
=d] —17d,d]
_ a7 T
- d# - du
=0

(A-27) and (A-28) show that the matrix F(I — vP,) — d#dl— of diagonal entries are positive and its off-diagonal entries are
negative. So its each row sum plus the corresponding column sum is positive. So Aymerp iS positive definite.

Therefore, 0* = A\_ll\l/lﬁTDbVMETD can be seen to be the unique globally asymptotically stable equilibrium for ODE (A-24).
Let fioc (0) = lim, _ h(:e). Then EOO(G) = —Aymerpf is well-defined. Consider now the ODE

(A-28)

0(t) = —Avmerpd(t). (A-29)
The ODE (A-29) has the origin as its unique globally asymptotically stable equilibrium. Thus, the assumption (A1) and (A2)
are verified. O

B Experimental details

2-state version of Baird’s off-policy counterexample: All learning rates follow linear learning rate decay. For TD algorithm,
o‘k =4 and ag = 0.1. For TDC algorithm, = = 5 and iy = 0.1. For VMTDC algorlthm “k =5, ¢t = 4 and ag = 0.1. For

Ck > Wi
VMTD algorithm, g’; =4 and g = 0.1.

2-state version of Baird’s off-policy counterexample: All learning rates follow linear learning rate decay. For TD algorithm,
2t = 4 and og = 0.1. For TDC algorithm, % = b and a9 = 0.1.For ETD algorithm, oy = 0.1. For VMTDC algorithm,

W

‘Z: =35, O"“ = 4,and a9 = 0.1.For VMETD algorithm, a’“ =4 and ap = 0.1. For VMTD algorithm, £ a’“ =4 and ag = 0.1.



For all policy evaluation experiments, each experiment is independently run 100 times.
For the four control experiments: The learning rates for each algorithm in all experiments are shown in Table 1. For all control
experiments, each experiment is independently run 50 times.

Table 1: Learning rates (Ir) of four control experiments.

. envs Maze Cliff walking Mountain Car Acrobot
algorithms(lr)
Sarsa(«) 0.1 0.1 0.1 0.1
GQ(o, () 0.1,0.003 0.1,0.004 0.1,0.01 0.1,0.01
EQ() 0.006 0.005 0.001 0.0005
VMSarsa(a, ) 0.1,0.001 0.1, 1e-4 0.1, le-4 0.1, le-4
VMGQ(e, ¢, B) 0.1,0.001,0.001 0.1,0.005,1e-4 0.1,5e-4,1e-4 0.1,5e-4, 1e-4
VMEQ(«, ) 0.001, 0.0005 0.005, 0.0001 0.001,0.0001  0.0005,0.0001
Q-learning(a) 0.1 0.1 0.1 0.1
VMQ(«, B) 0.1,0.001 0.1, 1e-4 0.1, 1e-4 0.1,1e-4
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