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Is Minimizing Errors the Only Option for Value-based Reinforcement Learning?

Anonymous Authors1

Abstract
In the regression task of supervised learning, we
need to minimize the error and trade off the vari-
ance. Drawing on this idea, the existing research
on value-based reinforcement learning also mini-
mizes the error. However, is error minimization
really the only option for value-based reinforce-
ment learning? We can easily observe that the
policy on action choosing probabilities is often
related to the relative values, and has nothing to
do with their absolute values. Based on this ob-
servation, we propose the objective of variance
minimization instead of error minimization, de-
rive on-policy and off-policy algorithms respec-
tively, and conduct an analysis of the convergence
rate and experiments. The experimental results
show that our proposed variance minimization
algorithms converge much faster.

1. Introduction
Reinforcement learning can be mainly divided into two
categories: value-based reinforcement learning and policy
gradient-based reinforcement learning. This paper focuses
on temporal difference learning based on linear approxi-
mated valued functions. Its research is usually divided into
two steps: the first step is to establish the convergence of the
algorithm, and the second step is to accelerate the algorithm.

In terms of stability, Sutton (1988) established the conver-
gence of on-policy TD(0), and Tsitsiklis & Van Roy (1997)
established the convergence of on-policy TD(λ). However,
“The deadly triad” consisting of off-policy learning, boot-
strapping, and function approximation makes the stability
a difficult problem (Sutton & Barto, 2018). To solve this
problem, convergent off-policy temporal difference learning
algorithms are proposed, e.g., BR (Baird et al., 1995), GTD
(Sutton et al., 2008), GTD2 and TDC (Sutton et al., 2009),
ETD (Sutton et al., 2016), and MRetrace (Chen et al., 2023).
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Anonymous Country. Correspondence to: Anonymous Author
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In terms of acceleration, Hackman (2012) proposed Hybrid
TD algorithm with on-policy matrix. Liu et al. (2015; 2016;
2018) proposed true stochastic algorithms, i.e., GTD-MP
and GTD2-MP, from a convex-concave saddle-point formu-
lation. Second-order methods are used to accelerate TD
learning, e.g., Quasi Newton TD (Givchi & Palhang, 2015)
and accelerated TD (ATD) (Pan et al., 2017). Hallak et al.
(2016) introduced an new parameter to reduce variance for
ETD. Zhang & Whiteson (2022) proposed truncated ETD
with a lower variance. Variance Reduced TD with direct
variance reduction technique (Johnson & Zhang, 2013) is
proposed by (Korda & La, 2015) and analysed by (Xu et al.,
2019). How to further improve the convergence rates of
reinforcement learning algorithms is currently still an open
problem.

Algorithm stability is prominently reflected in the changes
to the objective function, transitioning from mean squared
errors (MSE) (Sutton & Barto, 2018) to mean squared bell-
man errors (MSBE) (Baird et al., 1995), then to norm of
the expected TD update (Sutton et al., 2009), and further to
mean squared projected Bellman errors (MSPBE) (Sutton
et al., 2009). On the other hand, algorithm acceleration is
more centered around optimizing the iterative update for-
mula of the algorithm itself without altering the objective
function, thereby speeding up the convergence rate of the
algorithm. The emergence of new optimization objective
functions often leads to the development of novel algorithms.
The introduction of new algorithms, in turn, tends to inspire
researchers to explore methods for accelerating algorithms,
leading to the iterative creation of increasingly superior
algorithms.

The kernel loss function can be optimized using standard
gradient-based methods, addressing the issue of double sam-
pling in residual gradient algorithm (Feng et al., 2019). It
ensures convergence in both on-policy and off-policy scenar-
ios. The logistic bellman error is convex and smooth in the
action-value function parameters, with bounded gradients
(Bas-Serrano et al., 2021). In contrast, the squared Bellman
error is not convex in the action-value function parameters,
and RL algorithms based on recursive optimization using it
are known to be unstable.

It is necessary to propose a new objective function, but the
mentioned objective functions above are all some form of
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error. Is minimizing error the only option for value-based
reinforcement learning?

Error can be decomposed into bias, variance and unavoid-
able noise. Among them, bias measures the difference be-
tween the predicted values of the model and the true values,
reflecting the model’s fitting ability. Variance, on the other
hand, quantifies the model’s sensitivity to different train-
ing data, indicating its stability and generalization ability.
Balancing bias and variance is important, as they represent
trade-offs (Zhou, 2021). In the context of this paper, where
only a linear model is considered and the model complex-
ity is not adjusted, it is difficult to improve the bias. High
bias indicates that the model poorly fits the training data,
resulting in underfitting. In supervised learning, high bias is
generally considered unacceptable.

However, in reinforcement learning, high bias may be ac-
ceptable in certain cases. This is due to the observation that
policies based on value functions, such as greedy, ϵ-greedy,
and softmax policies, often rely on the relative values of ac-
tion values rather than their absolute values when selecting
different actions.

Based on this observation, we propose alternate objective
functions instead of minimizing errors. We minimize Vari-
ance of Bellman Error (VBE) and Variance of Projected
Bellman Error (VPBE), and derive Variance Minimization
(VM) algorithms. These algorithms preserve the invariance
of the optimal policy, but significantly reduce the variance
of gradient estimation, and thus hastening convergence.

The contributions of this paper are as follows: (1) Introduc-
tion of novel objective functions based on the invariance
of the optimal policy. (2) Derived two algorithms, one on-
policy and one off-policy. (3) Proof of their convergence.
(4) Analysis of the convergence rate of on-policy algorithm.
(5) Experiments demonstrating the faster convergence speed
of the proposed algorithms.

2. Preliminaries
Reinforcement learning agent interacts with environment,
observes state, takes sequential decision makings to influ-
ence environment, and obtains rewards. Consider an infinite-
horizon discounted Markov Decision Process (MDP), de-
fined by a tuple ⟨S,A,R, P, γ⟩, where S = {1, 2, . . . , N}
is a finite set of states of the environment; A is a finite set
of actions of the agent; R : S × A× S → R is a bounded
deterministic reward function; P : S × A × S → [0, 1] is
the transition probability distribution; and γ ∈ (0, 1) is the
discount factor (Sutton & Barto, 2018). Due to the require-
ments of online learning, value iteration based on sampling
is considered in this paper. In each sampling, an experience
(or transition) ⟨s, a, s′, r⟩ is obtained.

A policy is a mapping π : S × A → [0, 1]. The goal of
the agent is to find an optimal policy π∗ to maximize the
expectation of a discounted cumulative rewards in a long
period. State value function V π(s) for a stationary policy π
is defined as:

V π(s) = Eπ[

∞∑
k=0

γkRk|s0 = s].

Linear value function for state s ∈ S is defined as:

Vθ(s) := θ⊤ϕ(s) =

m∑
i=1

θiϕi(s), (1)

where θ := (θ1, θ2, . . . , θm)⊤ ∈ Rm is a parameter vector,
ϕ := (ϕ1, ϕ2, . . . , ϕm)⊤ ∈ Rm is a feature function defined
on state space S, and m is the feature size.

Tabular temporal difference (TD) learning (Sutton & Barto,
2018) has been successfully applied to small-scale problems.
To deal with the well-known curse of dimensionality of
large scale MDPs, value function is usually approximated
by a linear model, kernel methods, decision trees, or neural
networks, etc. This paper focuses on the linear model, where
features are usually hand coded by domain experts.

TD learning can also be used to find optimal strategies. The
problem of finding an optimal policy is often called the
control problem. Two popular TD methods are Sarsa and
Q-leaning. The former is an on-policy TD control, while
the latter is an off-policy control.

It is well known that TDC algorithm (Sutton et al., 2009)
guarantees convergence under off-policy conditions while
the off-policy TD algorithm may diverge. The objective
function of TDC is MSPBE. TDC is essentially an adjust-
ment or correction of the TD update so that it follows the
gradient of the MSPBE objective function. In the context
of the TDC algorithm, the control algorithm is known as
Greedy-GQ(λ) (Sutton et al., 2009). When λ is set to 0, it
is denoted as GQ(0).

3. Variance Minimization Algorithms
3.1. Motivation

In reinforcement learning, bias is acceptable, while in super-
vised learning it is not. As shown in Table 1, although there
is a bias between the true value and the predicted value,
action a3 is still chosen under the greedy-policy. On the
contrary, supervised learning is usually used to predict tem-
perature, humidity, morbidity, etc. If the bias is too large,
the consequences could be serious.

In addition, reward shaping can significantly speed up the
learning by adding a shaping reward F (s, s′) to the original
reward r, where F (s, s′) is the general form of any state-
based shaping reward. Static potential-based reward shaping
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Table 1. Classification accuracies for naive Bayes and flexible
Bayes on various data sets.

ACTION Q VALUE Q VALUE WITH BIAS

Q(s, a0) 1 5
Q(s, a1) 2 6
Q(s, a2) 3 7
Q(s, a3) 4 8
argmina Q(s, a) a3 a3

(Static PBRS) maintains the policy invariance if the shaping
reward follows from F (s, s′) = γf(s′) − f(s) (Ng et al.,
1999).

This means that we can make changes to the TD error δ =
r + γθ⊤ϕ′ − θ⊤ϕ while still ensuring the invariance of the
optimal policy,

δ − ω = r + γθ⊤ϕ′ − θ⊤ϕ− ω,

where ω is a constant, acting as a static PBRS. This also
means that algorithms with the optimization goal of min-
imizing errors, after introducing reward shaping, may re-
sult in larger or smaller bias. Fortunately, as discussed
above, bias is acceptable in reinforcement learning. How-
ever, the problem is that selecting an appropriate ω re-
quires expert knowledge. This forces us to learn ω dy-
namically, i.e., ω = ωt and dynamic PBRS can also
maintain the policy invariance if the shaping reward is
F (s, t, s′, t′) = γf(s′, t′) − f(s, t), where t is the time-
step the agent reaches in state s (Devlin & Kudenko, 2012).
However, this result requires the convergence guarantee of
the dynamic potential function f(s, t). If f(s, t) does not
converge as the time-step t→∞, the Q-values of dynamic
PBRS are not guaranteed to converge.

Let fωt
(s) = ωt

γ−1 . Thus, Fωt
(s, s′) = γfωt

(s′)−fωt
(s) =

ωt is a dynamic PBRS. And if ω converges finally, the
dynamic potential function f(s, t) will converge. Bias is
the expected difference between the predicted value and the
true value. Therefore, under the premise of bootstrapping,
we first think of letting ω

.
= E[E[δ|s]] = E[δ].

As we all know, the optimization process of linear TD(0)
(semi-gradient) and linear TDC are as follows, respectively:

θ∗ = argmin
θ

E[(E[δ|s])2],

and
θ∗ = argmin

θ
E[δϕ]⊤E[ϕϕ⊤]−1E[δϕ].

As a result, two novel objective functions and their corre-
sponding algorithms are proposed, where ω is subsequently
proven to converge, meaning that these two algorithms can
maintain the invariance of the optimal strategy.

3.2. Variance Minimization TD Learning: VMTD

For on-policy learning, a novel objective function, Variance
of Bellman Error (VBE), is proposed as follows:

argminθ VBE(θ) = argminθ E[(E[δ|s]− E[E[δ|s]])2]
= argminθ,ω E[(E[δ|s]− ω)2].

(2)
Clearly, it is no longer to minimize Bellman errors.

First, the parameter ω is derived directly based on stochastic
gradient descent:

ωk+1 ← ωk + βk(δk − ωk), (3)

where δk is the TD error as follows:

δk = r + γθ⊤k ϕ
′
k − θ⊤k ϕk. (4)

Then, based on stochastic semi-gradient descent, the update
of the parameter θ is as follows:

θk+1 ← θk + αk(δk − ωk)ϕk. (5)

The pseudocode of the VMTD algorithm is shown in Algo-
rithm 1.

For control tasks, two extensions of VMTD are named VM-
Sarsa and VMQ respectively, and the update formulas are
shown below:

θk+1 ← θk + αk(δk − ωk)ϕ(sk, ak). (6)

and
ωk+1 ← ωk + βk(δk − ωk), (7)

where δk delta in VMSarsa is:

δk = rk+1 + γθ⊤k ϕ(sk+1, ak+1)− θ⊤k ϕ(sk, ak), (8)

and δk delta in VMQ is:

δk = rk+1 + γmax
a∈A

θ⊤k ϕ(sk+1, a)− θ⊤k ϕ(sk, ak). (9)

3.3. Variance Minimization TDC Learning: VMTDC

For off-policy learning, we employ a projection operator.
The objective function is called Variance of Projected Bell-
man error (VPBE), and the corresponding algorithm is
called VMTDC.

VPBE(θ) = E[(δ − E[δ])ϕ]⊤E[ϕϕ⊤]−1E[(δ − E[δ])ϕ]
= E[(δ − ω)ϕ]⊤E[ϕϕ⊤]−1E[(δ − ω)ϕ],

(10)
where ω is used to estimate E[δ], i.e., ω .

= E[δ].

The derivation process of the VMTDC algorithm is the same
as that of the TDC algorithm, the only difference is that the

3
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Algorithm 1 VMTD algorithm with linear function approx-
imation in the on-policy setting

Input: θ0, ω0, γ, learning rate αt and βt

repeat
For any episode, initialize θ0 arbitrarily, ω0 to 0, γ ∈
(0, 1], and αt and βt are constant.
for t = 0 to T − 1 do

Take At from St according to policy µ, and arrive
at St+1

Observe sample (St,Rt+1,St+1) at time step t (with
their corresponding state feature vectors)
δt = Rt+1 + γθ⊤t ϕ

′
t − θ⊤t ϕt

θt+1 ← θt + αt(δt − ωt)ϕt

ωt+1 ← ωt + βt(δt − ωt)
St = St+1

end for
until terminal episode

original δ is replaced by δ−ω. Therefore, we can easily get
the updated formula of VMTDC, as follows:

θk+1 ← θk+αk[(δk−ωk)ϕ(sk)−γϕ(sk+1)(ϕ
⊤(sk)uk)],

(11)
uk+1 ← uk + ζk[δk − ωk − ϕ⊤(sk)uk]ϕ(sk), (12)

and
ωk+1 ← ωk + βk(δk − ωk), (13)

The pseudocode of the VMTDC algorithm for importance-
sampling scenario is shown in Algorithm 2 of Appendix
A.2.

Now, we will introduce the improved version of the GQ(0)
algorithm, named VMGQ(0):

θk+1 ← θk + αk[(δk − ωk)ϕ(sk, ak)
− γϕ(sk+1, A

∗
k+1)(ϕ

⊤(sk, ak)uk)],
(14)

uk+1 ← uk+ζk[(δk−uk)−ϕ⊤(sk, ak)uk]ϕ(sk, ak), (15)

and
ωk+1 ← ωk + βk(δk − ωk), (16)

where δk is (9) and A∗
k+1 = argmaxa(θ

⊤
k ϕ(sk+1, a)).

4. Theoretical Analysis
The purpose of this section is to establish the stabilities of
the VMTD algorithm and the VMTDC algorithm, and also
presents a corollary on the convergence rate of VMTD.

Theorem 4.1. (Convergence of VMTD). In the case of on-
policy learning, consider the iterations (3) and (5) with (4)
of VMTD. Let the step-size sequences αk and βk, k ≥ 0
satisfy in this case αk, βk > 0, for all k,

∑∞
k=0 αk =∑∞

k=0 βk = ∞,
∑∞

k=0 α
2
k < ∞,

∑∞
k=0 β

2
k < ∞, and

αk = o(βk). Assume that (ϕk, rk, ϕ
′
k) is an i.i.d. sequence

with uniformly bounded second moments, where ϕk and
ϕ′
k are sampled from the same Markov chain. Let A =

Cov(ϕ, ϕ− γϕ′), b = Cov(r, ϕ). Assume that matrix A is
non-singular. Then the parameter vector θk converges with
probability one to A−1b.

Proof. The proof is based on Borkar’s Theorem for general
stochastic approximation recursions with two time scales
(Borkar, 1997).

A new one-step linear TD solution is defined as:

0 = E[(δ − E[δ])ϕ] = −Aθ + b.

Thus, the VMTD’s solution is θVMTD = A−1b.

First, note that recursion (5) can be rewritten as

θk+1 ← θk + βkξ(k),

where
ξ(k) =

αk

βk
(δk − ωk)ϕk

Due to the settings of step-size schedule αk = o(βk),
ξ(k) → 0 almost surely as k → ∞. That is the incre-
ments in iteration (3) are uniformly larger than those in (5),
thus (3) is the faster recursion. Along the faster time scale,
iterations of (3) and (5) are associated to ODEs system as
follows:

θ̇(t) = 0, (17)

ω̇(t) = E[δt|θ(t)]− ω(t). (18)

Based on the ODE (17), θ(t) ≡ θ when viewed from the
faster timescale. By the Hirsch lemma (Hirsch, 1989), it
follows that ||θk − θ|| → 0 a.s. as k →∞ for some θ that
depends on the initial condition θ0 of recursion (5). Thus,
the ODE pair (17)-(18) can be written as

ω̇(t) = E[δt|θ]− ω(t). (19)

Consider the function h(ω) = E[δ|θ]− ω, i.e., the driving
vector field of the ODE (19). It is easy to find that the
function h is Lipschitz with coefficient −1. Let h∞(·) be
the function defined by h∞(ω) = limx→∞

h(xω)
x . Then

h∞(ω) = −ω, is well-defined. For (19), ω∗ = E[δ|θ] is the
unique globally asymptotically stable equilibrium. For the
ODE

ω̇(t) = h∞(ω(t)) = −ω(t), (20)

apply V⃗ (ω) = (−ω)⊤(−ω)/2 as its associated strict Li-
apunov function. Then, the origin of (20) is a globally
asymptotically stable equilibrium.

Consider now the recursion (3). Let Mk+1 = (δk −
ωk) − E[(δk − ωk)|F(k)], where F(k) = σ(ωl, θl, l ≤
k;ϕs, ϕ

′
s, rs, s < k), k ≥ 1 are the sigma fields generated

by ω0, θ0, ωl+1, θl+1, ϕl, ϕ
′
l, 0 ≤ l < k. It is easy to verify

4
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that Mk+1, k ≥ 0 are integrable random variables that sat-
isfy E[Mk+1|F(k)] = 0, ∀k ≥ 0. Because ϕk, rk, and ϕ′

k

have uniformly bounded second moments, it can be seen
that for some constant c1 > 0, ∀k ≥ 0,

E[||Mk+1||2|F(k)] ≤ c1(1 + ||ωk||2 + ||θk||2).

Now Assumptions (A1) and (A2) of (Borkar & Meyn, 2000)
are verified. Furthermore, Assumptions (TS) of (Borkar &
Meyn, 2000) is satisfied by our conditions on the step-size
sequences αk, βk. Thus, by Theorem 2.2 of (Borkar &
Meyn, 2000) we obtain that ||ωk − ω∗|| → 0 almost surely
as k →∞.

Consider now the slower time scale recursion (5). Based on
the above analysis, (5) can be rewritten as

θk+1 ← θk + αk(δk − E[δk|θk])ϕk.

Let G(k) = σ(θl, l ≤ k;ϕs, ϕ
′
s, rs, s < k), k ≥ 1 be the

sigma fields generated by θ0, θl+1, ϕl, ϕ
′
l, 0 ≤ l < k. Let

Zk+1 = Yt − E[Yt|G(k)], where

Yk = (δk − E[δk|θk])ϕk.

Consequently,

E[Yt|G(k)] = E[(δk − E[δk|θk])ϕk|G(k)]
= E[δkϕk|θk]− E[E[δk|θk]ϕk]
= E[δkϕk|θk]− E[δk|θk]E[ϕk]
= Cov(δk|θk, ϕk),

where Cov(·, ·) is a covariance operator.

Thus,

Zk+1 = (δk − E[δk|θk])ϕk − Cov(δk|θk, ϕk).

It is easy to verify that Zk+1, k ≥ 0 are integrable random
variables that satisfy E[Zk+1|G(k)] = 0, ∀k ≥ 0. Also,
because ϕk, rk, and ϕ′

k have uniformly bounded second
moments, it can be seen that for some constant c2 > 0,
∀k ≥ 0,

E[||Zk+1||2|G(k)] ≤ c2(1 + ||θk||2).

Consider now the following ODE associated with (5):

θ̇(t) = Cov(δ|θ(t), ϕ)
= Cov(r + (γϕ′ − ϕ)⊤θ(t), ϕ)
= Cov(r, ϕ)− Cov(θ(t)⊤(ϕ− γϕ′), ϕ)
= Cov(r, ϕ)− θ(t)⊤Cov(ϕ− γϕ′, ϕ)
= Cov(r, ϕ)− Cov(ϕ− γϕ′, ϕ)⊤θ(t)
= Cov(r, ϕ)− Cov(ϕ, ϕ− γϕ′)θ(t)
= −Aθ(t) + b.

(21)

Let h⃗(θ(t)) be the driving vector field of the ODE (21).

h⃗(θ(t)) = −Aθ(t) + b.

Consider the cross-covariance matrix,

A = Cov(ϕ, ϕ− γϕ′)

= Cov(ϕ,ϕ)+Cov(ϕ−γϕ′,ϕ−γϕ′)−Cov(γϕ′,γϕ′)
2

= Cov(ϕ,ϕ)+Cov(ϕ−γϕ′,ϕ−γϕ′)−γ2Cov(ϕ′,ϕ′)
2

= (1−γ2)Cov(ϕ,ϕ)+Cov(ϕ−γϕ′,ϕ−γϕ′)
2 ,

(22)

where we eventually used Cov(ϕ′, ϕ′) = Cov(ϕ, ϕ) 1. Note
that the covariance matrix Cov(ϕ, ϕ) and Cov(ϕ−γϕ′, ϕ−
γϕ′) are semi-positive definite. Then, the matrix A is semi-
positive definite because A is linearly combined by two
positive-weighted semi-positive definite matrice (22). Fur-
thermore, A is nonsingular due to the assumption. Hence,
the cross-covariance matrix A is positive definite.

Therefore, θ∗ = A−1b can be seen to be the unique glob-
ally asymptotically stable equilibrium for ODE (21). Let
h⃗∞(θ) = limr→∞

h⃗(rθ)
r . Then h⃗∞(θ) = −Aθ is well-

defined. Consider now the ODE

θ̇(t) = −Aθ(t). (23)

The ODE (23) has the origin as its unique globally asymp-
totically stable equilibrium. Thus, the assumption (A1) and
(A2) are verified.

Theorem 3 in (Dalal et al., 2020) provides a general conclu-
sion on the convergence speed of all linear two-timescale
algorithms. VMTD satisfies the assumptions of this theo-
rem, leading to the following corollary.

Corollary 4.2. Consider the Sparsely Projected variant of
VMTD. Then, for αk = 1/(k + 1)α, βk = 1/(k + 1)β ,
0 < β < α < 1, p > 1, with probility larger than 1− τ , for
all k ≥ N3, we have

||θ′k − θ∗|| ≤ C3,θ

√
ln(4d21(k + 1)p/τ)

(k + 1)α/2
(24)

||ω′
n − ω∗|| ≤ C3,ω

√
ln(4d22(k + 1)p/τ)

(k + 1)ω/2
, (25)

where d1 and d2 represent the dimensions of θ and ω, re-
spectively. For VMTD, d2 = 1. The meanings of N3,C3,θ

and C3,ω are explained in (Dalal et al., 2020). The formulas
for θ′k and ω′

n can be found in (30) and (31).

Theorem 4.3. (Convergence of VMTDC). In the case of
off-policy learning, consider the iterations (13), (12) and
(11) of VMTDC. Let the step-size sequences αk, ζk and
βk, k ≥ 0 satisfy in this case αk, ζk, βk > 0, for all k,∑∞

k=0 αk =
∑∞

k=0 βk =
∑∞

k=0 ζk = ∞,
∑∞

k=0 α
2
k < ∞,∑∞

k=0 ζ
2
k < ∞,

∑∞
k=0 β

2
k < ∞, and αk = o(ζk), ζk =

1The covariance matrix Cov(ϕ′, ϕ′) is equal to the covariance
matrix Cov(ϕ, ϕ) if the initial state is re-reachable or initialized
randomly in a Markov chain for on-policy update.

5
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A B C D E
0 0 0 0 0 1

Figure 1. Random walk.

7

1 2 3 4 5 6

Figure 2. 7-state version of Baird’s off-policy counterexample.

o(βk). Assume that (ϕk, rk, ϕ
′
k) is an i.i.d. sequence with

uniformly bounded second moments. Let A = Cov(ϕ, ϕ−
γϕ′), b = Cov(r, ϕ), and C = E[ϕϕ⊤]. Assume that A and
C are non-singular matrices. Then the parameter vector θk
converges with probability one to A−1b.

Please refer to the appendix A.2 for detailed proof process.

5. Experimental Studies
This section assesses algorithm performance through experi-
ments, which are divided into policy evaluation experiments
and control experiments.

5.1. Testing Tasks

Random-walk: as shown in Figure 1, all episodes start
in the center state, C, and proceed to left or right by one
state on each step, equiprobably. Episodes terminate either
on the extreme left or the extreme right, and get a reward
of +1 if terminate on the right, or 0 in the other case. In
this task, the true value for each state is the probability of
starting from that state and terminating on the right (Sutton
& Barto, 2018). Thus, the true values of states from A
to E are 1

6 ,
2
6 ,

3
6 ,

4
6 ,

5
6 , respectively. The discount factor

γ = 1.0. There are three standard kinds of features for
random-walk problems: tabular feature, inverted feature
and dependent feature (Sutton et al., 2009). The feature
matrices corresponding to three random walks are shown
in Appendix B. Conduct experiments using an on-policy
approach in the Random-walk environment.

Baird’s off-policy counterexample: This task is well
known as a counterexample, in which TD diverges (Baird

et al., 1995; Sutton et al., 2009). As shown in Figure 2,
reward for each transition is zero. Thus the true values are
zeros for all states and for any given policy. The behaviour
policy chooses actions represented by solid lines with a
probability of 1

7 and actions represented by dotted lines with
a probability of 6

7 . The target policy is expected to choose
the solid line with more probability than 1

7 , and it chooses
the solid line with probability of 1 in this paper. The dis-
count factor γ = 0.99, and the feature matrix is defined in
Appendix B (Baird et al., 1995; Sutton et al., 2009; Maei,
2011).

Maze: The learning agent should find a shortest path
from the upper left corner to the lower right corner.
In each state, there are
four alternative actions:
up, down, left, and
right, which takes the
agent deterministically to
the corresponding neigh-
bour state, except when a
movement is blocked by
an obstacle or the edge of
the maze. Rewards are −1 in all transitions until the agent
reaches the goal state. The discount factor γ = 0.99, and
states s are represented by tabular features.The maximum
number of moves in the game is set to 1000.

The other three control environments: Cliff Walking,
Mountain Car, and Acrobot are selected from the gym of-
ficial website and correspond to the following versions:
“CliffWalking-v0”, “MountainCar-v0” and “Acrobot-v1”.
For specific details, please refer to the gym official web-
site. The maximum number of steps for the Mountain Car
environment is set to 1000, while the default settings are
used for the other two environments. In Mountain car and
Acrobot, features are generated by tile coding.

Please, refer to the Appendix B for the selection of learning
rates for all experiments.

5.2. Experimental Results and Analysis

For policy evaluation experiments, compare the perfor-
mance of the VMTD, VMTDC, TD, and TDC algorithms.
The vertical axis is unified as RVBE.

For policy evaluation experiments, the criteria for evaluat-
ing algorithms vary. The objective function minimized by
our proposed new algorithm differs from that of other algo-
rithms. Therefore, to ensure fairness in comparisons, this
study only contrasts algorithm experiments in controlled
settings.

This study will compare the performance of Sarsa, Q-
learning, GQ(0), AC, VMSarsa, VMQ, and VMGQ(0) in
four control environments.

6
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Table 2. Difference between R-learning and tabular VMQ.

algorithms update formula
R-learning Qk+1(s, a)← Qk(s, a) + αk(rk+1 −mk +maxb∈A Qk(s, b)−Qk(s, a))

mk+1 ← mk + βk(rk+1 +maxb∈A Qk(s, b)−Qk(s, a)−mk)
tabular VMQ Qk+1(s, a)← Qk(s, a) + αk(rk+1 + γmaxb∈A Qk(s, b)−Qk(s, a)− ωk)

ωk+1 ← ωk + βk(rk+1 + γmaxb∈A Qk(s, b)−Qk(s, a)− ωk)

(a) Dependent (b) Tabular

(c) Inverted (d) counterexample

Figure 3. Learning curses of four evaluation environments.

The learning curves of the algorithms corresponding to
policy evaluation experiments and control experiments are
shown in Figures 3 and 4, respectively. The shaded area in
Figure 3, 4 represents the standard deviation (std).

In the random-walk tasks, VMTD and VMTDC exhibit
excellent performance, outperforming TD and TDC in the
case of dependent random-walk.

In the 7-state example counter task, TD diverges, while
VMTDC converges and performs better than TDC. From
the update formula, it can be observed that the VMTD al-
gorithm, like TDC, is also an adjustment or correction of
the TD update. What is more surprising is that VMTD also
maintains convergence and demonstrates the best perfor-
mance.

In Maze, Mountain Car, and Acrobot, the convergence speed
of VMSarsa, VMQ, and VMGQ(0) has been significantly
improved compared to Sarsa, Q-learning, and GQ(0), re-
spectively. The performance of the AC algorithm is at an

intermediate level. The performances of VMSarsa, VMQ,
and VMGQ(0) in these three experimental environments
have no significant differences.

In Cliff Walking, Sarsa and VMSarsa converge to slightly
worse solutions compared to other algorithms. The conver-
gence speed of VMSarsa is significantly better than that of
Sarsa. The convergence speed of VMGQ(0) and VMQ is bet-
ter than other algorithms, and the performance of VMGQ(0)
is slightly better than that of VMQ.

In summary, the performance of VMSarsa, VMQ, and
VMGQ(0) is better than that of other algorithms. In the
Cliff Walking environment, the performance of VMGQ(0)
is slightly better than that of VMSarsa and VMQ. In the
other three experimental environments, the performances of
VMSarsa, VMQ, and VMGQ(0) are close.

6. Related Work
6.1. Difference between VMQ and R-learning

Tabular VMQ’s update formula bears some resemblance
to R-learning’s update formula. As shown in Table 2, the
update formulas of the two algorithms have the following
differences:
(1) The goal of the R-learning algorithm (Schwartz, 1993) is
to maximize the average reward, rather than the cumulative
reward, by learning an estimate of the average reward. This
estimate m is then used to update the Q-values. On the con-
trary, the ω in the tabular VMQ update formula eventually
converges to E[δ].
(2) When γ = 1 in the tabular VMQ update formula, the R-
learning update formula is formally the same as the tabular
VMQ update formula. Therefore, R-learning algorithm can
be considered as a special case of VMQ algorithm in form.

6.2. Variance Reduction for TD Learning

The TD with centering algorithm (CTD) (Korda & La, 2015)
was proposed, which directly applies variance reduction
techniques to the TD algorithm. The CTD algorithm up-
dates its parameters using the average gradient of a batch
of Markovian samples and a projection operator. Unfortu-
nately, the authors’ analysis of the CTD algorithm contains
technical errors. The VRTD algorithm (Xu et al., 2020) is
also a variance-reduced algorithm that updates its parame-
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(a) Maze (b) Cliff Walking

(c) Mountain Car (d) Acrobot

Figure 4. Learning curses of four contral environments.

ters using the average gradient of a batch of i.i.d. samples.
The authors of VRTD provide a technically sound analysis
to demonstrate the advantages of variance reduction.

6.3. Variance Reduction for Policy Gradient Algorithms

Policy gradient algorithms are a class of reinforcement learn-
ing algorithms that directly optimize cumulative rewards.
REINFORCE is a Monte Carlo algorithm that estimates
gradients through sampling, but may have a high variance.
Baselines are introduced to reduce variance and to acceler-
ate learning (Sutton & Barto, 2018). In Actor-Critic, value
function as a baseline and bootstrapping are used to reduce
variance, also accelerating convergence (Sutton & Barto,
2018). TRPO (Schulman et al., 2015) and PPO (Schulman
et al., 2017) use generalized advantage estimation, which
combines multi-step bootstrapping and Monte Carlo estima-
tion to reduce variance, making gradient estimation more
stable and accelerating convergence.

In Variance Minimization, the incorporation of ω .
= E[δ]

bears a striking resemblance to the use of a baseline in

policy gradient methods. The introduction of a baseline in
policy gradient techniques does not alter the expected value
of the update; rather, it significantly impacts the variance of
gradient estimation. The addition of ω .

= E[δ] in Variance
Minimization preserves the invariance of the optimal policy
while stabilizing gradient estimation, reducing the variance
of gradient estimation, and hastening convergence.

7. Conclusion and Future Work
Value-based reinforcement learning typically aims to mini-
mize error as an optimization objective. As an alternation,
this study proposes two new objective functions: VBE and
VPBE, and derives an on-policy algorithm: VMTD and an
off-policy algorithm: VMTDC. Both algorithms demon-
strated superior performance in policy evaluation and con-
trol experiments. Future work may include, but are not
limited to, (1) analysis of the convergence rate of VMTDC.
(2) extensions of VBE and VPBE to multi-step returns. (3)
extensions to nonlinear approximations, such as neural net-
works.

8
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A. Relevant proofs
A.1. Proof of Corollary 4.2

The update formulas in linear two-timescale algorithms are as follows:

θk+1 = θk + αk[h1(θk, ωk) +M
(1)
k+1], (26)

ωk+1 = ωk + αk[h2(θk, ωk) +M
(2)
k+1]. (27)

where αk, βk ∈ R are stepsizes and M (1) ∈ Rd1 ,M (2) ∈ Rd2 denote noise. h1 : Rd1 ×Rd2 → Rd1 and h2 : Rd1 ×Rd2 →
Rd2 have the form, respectively,

h1(θ, ω) = v1 − Γ1θ −W1ω, (28)

h2(θ, ω) = v2 − Γ2θ −W2ω, (29)

where v1 ∈ Rd1 , v2 ∈ Rd2 , Γ1 ∈ Rd1×d1 , Γ2 ∈ Rd2×d1 , W1 ∈ Rd1×d2 and W2 ∈ Rd2×d2 . d1 and d2 are the dimensions
of vectors θ and ω, respectively.

For Theorem 3 in (Dalal et al., 2020), the theorem still holds even when d||1 is not equal to d2. For the VMTD algorithm,
d2 is equal to 1. (Dalal et al., 2020) presents the matrix assumption, step size assumption, and defines sparse projection.

Assumption A.1. (Matrix Assumption). W2 and X1 = Γ1 −W1W
−1
2 Γ2 are positive definite(not necessarily symmetric).

Assumption A.2. (Step Size Assumption). αk = (k + 1)−α and βk = (k + 1)−β , where 1 > α > β > 0.

Definition A.3. (Sparse Projection). For R > 0, let ΠR(x) = min{1, R/||x||}. x be the projection into the ball with redius
R around the origin. The sparse projection operator

Πn,R =

{
ΠR, if k = nn − 1 for some n ∈ Z>0,

I, otherwise.

We call it sparse as it projects only on specific indices that are exponentially far apart.

Pick an arbitrary p > 1. Fix some constant Rθ
proj > 0 and Rω

proj > 0 for the radius of the projection ball. Further, let

θ∗ = X−1
1 b1, ω

∗ = W−1
2 (v2 − Γ2θ

∗)

with b1 = v1 −W1W
−1
2 v2. The formula for the sparse projection update in linear two-timescale algorithms is as follows:

θ′k+1 = Πk+1,Rθ
proj
(θ′k + αk[h1(θ

′
k, ω

′
k) +M

(1′)
k+1]), (30)

ω′
k+1 = Πk+1,Rω

proj
(ω′

k + βk[h2(θ
′
k, ω

′
k) +M

(2′)
k+1]). (31)

Proof. As long as the VMTD algorithm satisfies Assumption A.1, the convergence speed of the VMTD algorithm can be
obtained.

VMTD’s update rule is
θk+1 = θk + αk(δk − ωk)ϕk.

ωk+1 = ωk + βk(δk − ωk).

Thus, h1(θ, ω) = Cov(r, ϕ)−Cov(ϕ, ϕ− γϕ′)θ, h2(θ, ω) = E[r] +E[γϕ′⊤−ϕ⊤]θ−ω, Γ1 = Cov(ϕ, ϕ− γϕ′), W1 = 0
and Γ2 = −E[γϕ′⊤ − ϕ⊤], W2 = 1, v2 = E[r]. Additionally, X1 = Γ1 −W1W

−1
2 Γ2 = Cov(ϕ, ϕ − γϕ′). It can be

deduced from the proof 4 that X1 is a positive definite matrix. The VMTD algorithm satisfies the Assumption A.1. By
the proof 4, Definition 1 in (Dalal et al., 2020) is satisfied. We can apply the Theorem 3 in (Dalal et al., 2020) to get the
Corollary 4.2.
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A.2. Proof of Theorem 4.3

Proof. The proof is similar to that given by (Sutton et al., 2009) for TDC, but it is based on multi-time-scale stochastic
approximation.

For the VMTDC algorithm, a new one-step linear TD solution is defined as:

0 = E[(ϕ− γϕ′ − E[ϕ− γϕ′])ϕ⊤]E[ϕϕ⊤]−1E[(δ − E[δ])ϕ] = A⊤C−1(−Aθ + b).

The matrix A⊤C−1A is positive definite. Thus, the VMTD’s solution is θVMTDC = θVMTD = A−1b.

First, note that recursion (11) and (12) can be rewritten as, respectively,

θk+1 ← θk + ζkx(k),

uk+1 ← uk + βky(k),

where
x(k) =

αk

ζk
[(δk − ωk)ϕk − γϕ′

k(ϕ
⊤
k uk)],

y(k) =
ζk
βk

[δk − ωk − ϕ⊤
k uk]ϕk.

Recursion (11) can also be rewritten as
θk+1 ← θk + βkz(k),

where
z(k) =

αk

βk
[(δk − ωk)ϕk − γϕ′

k(ϕ
⊤
k uk)],

Due to the settings of step-size schedule αk = o(ζk), ζk = o(βk), x(k)→ 0, y(k)→ 0, z(k)→ 0 almost surely as k → 0.
That is that the increments in iteration (13) are uniformly larger than those in (12) and the increments in iteration (12) are
uniformly larger than those in (11), thus (13) is the fastest recursion, (12) is the second fast recursion and (11) is the slower
recursion. Along the fastest time scale, iterations of (11), (12) and (13) are associated to ODEs system as follows:

θ̇(t) = 0, (32)

u̇(t) = 0, (33)

ω̇(t) = E[δt|u(t), θ(t)]− ω(t). (34)

Based on the ODE (32) and (33), both θ(t) ≡ θ and u(t) ≡ u when viewed from the fastest timescale. By the Hirsch lemma
(Hirsch, 1989), it follows that ||θk − θ|| → 0 a.s. as k →∞ for some θ that depends on the initial condition θ0 of recursion
(11) and ||uk − u|| → 0 a.s. as k →∞ for some u that depends on the initial condition u0 of recursion (12). Thus, the ODE
pair (32)-(refomegavmtdcFastest) can be written as

ω̇(t) = E[δt|u, θ]− ω(t). (35)

Consider the function h(ω) = E[δ|θ, u]− ω, i.e., the driving vector field of the ODE (35). It is easy to find that the function
h is Lipschitz with coefficient −1. Let h∞(·) be the function defined by h∞(ω) = limr→∞

h(rω)
r . Then h∞(ω) = −ω, is

well-defined. For (35), ω∗ = E[δ|θ, u] is the unique globally asymptotically stable equilibrium. For the ODE

ω̇(t) = h∞(ω(t)) = −ω(t), (36)

apply V⃗ (ω) = (−ω)⊤(−ω)/2 as its associated strict Liapunov function. Then, the origin of (36) is a globally asymptotically
stable equilibrium.

Consider now the recursion (13). Let Mk+1 = (δk − ωk) − E[(δk − ωk)|F(k)], where F(k) = σ(ωl, ul, θl, l ≤
k;ϕs, ϕ

′
s, rs, s < k), k ≥ 1 are the sigma fields generated by ω0, u0, θ0, ωl+1, ul+1, θl+1, ϕl, ϕ

′
l, 0 ≤ l < k. It is

12
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easy to verify that Mk+1, k ≥ 0 are integrable random variables that satisfy E[Mk+1|F(k)] = 0, ∀k ≥ 0. Because ϕk, rk,
and ϕ′

k have uniformly bounded second moments, it can be seen that for some constant c1 > 0, ∀k ≥ 0,

E[||Mk+1||2|F(k)] ≤ c1(1 + ||ωk||2 + ||uk||2 + ||θk||2).

Now Assumptions (A1) and (A2) of (Borkar & Meyn, 2000) are verified. Furthermore, Assumptions (TS) of (Borkar &
Meyn, 2000) is satisfied by our conditions on the step-size sequences αk,ζk, βk. Thus, by Theorem 2.2 of (Borkar & Meyn,
2000) we obtain that ||ωk − ω∗|| → 0 almost surely as k →∞.

Consider now the second time scale recursion (12). Based on the above analysis, (12) can be rewritten as

θ̇(t) = 0, (37)

u̇(t) = E[(δt − E[δt|u(t), θ(t)])ϕt|θ(t)]− Cu(t). (38)

The ODE (37) suggests that θ(t) ≡ θ (i.e., a time invariant parameter) when viewed from the second fast timescale. By the
Hirsch lemma (Hirsch, 1989), it follows that ||θk − θ|| → 0 a.s. as k →∞ for some θ that depends on the initial condition
θ0 of recursion (11).

Consider now the recursion (12). Let Nk+1 = ((δk − E[δk]) − ϕkϕ
⊤
k uk) − E[((δk − E[δk]) − ϕkϕ

⊤
k uk)|I(k)], where

I(k) = σ(ul, θl, l ≤ k;ϕs, ϕ
′
s, rs, s < k), k ≥ 1 are the sigma fields generated by u0, θ0, ul+1, θl+1, ϕl, ϕ

′
l, 0 ≤ l < k. It

is easy to verify that Nk+1, k ≥ 0 are integrable random variables that satisfy E[Nk+1|I(k)] = 0, ∀k ≥ 0. Because ϕk, rk,
and ϕ′

k have uniformly bounded second moments, it can be seen that for some constant c2 > 0, ∀k ≥ 0,

E[||Nk+1||2|I(k)] ≤ c2(1 + ||uk||2 + ||θk||2).

Because θ(t) ≡ θ from (37), the ODE pair (37)-(38) can be written as

u̇(t) = E[(δt − E[δt|θ])ϕt|θ]− Cu(t). (39)

Now consider the function h(u) = E[δt − E[δt|θ]|θ] − Cu, i.e., the driving vector field of the ODE (39). For (39),
u∗ = C−1E[(δ − E[δ|θ])ϕ|θ] is the unique globally asymptotically stable equilibrium. Let h∞(u) = −Cu. For the ODE

u̇(t) = h∞(u(t)) = −Cu(t), (40)

the origin of (40) is a globally asymptotically stable equilibrium because C is a positive definite matrix (because it is
nonnegative definite and nonsingular). Now Assumptions (A1) and (A2) of (Borkar & Meyn, 2000) are verified. Furthermore,
Assumptions (TS) of (Borkar & Meyn, 2000) is satisfied by our conditions on the step-size sequences αk,ζk, βk. Thus, by
Theorem 2.2 of (Borkar & Meyn, 2000) we obtain that ||uk − u∗|| → 0 almost surely as k →∞.

Consider now the slower timescale recursion (11). In the light of the above, (11) can be rewritten as

θk+1 ← θk + αk(δk − E[δk|θk])ϕk − αkγϕ
′
k(ϕ

⊤
k C

−1E[(δk − E[δk|θk])ϕ|θk]). (41)

Let G(k) = σ(θl, l ≤ k;ϕs, ϕ
′
s, rs, s < k), k ≥ 1 be the sigma fields generated by θ0, θl+1, ϕl, ϕ

′
l, 0 ≤ l < k. Let

Zk+1 = ((δk − E[δk|θk])ϕk − γϕ′
kϕ

⊤
k C

−1E[(δk − E[δk|θk])ϕ|θk])
−E[((δk − E[δk|θk])ϕk − γϕ′

kϕ
⊤
k C

−1E[(δk − E[δk|θk])ϕ|θk])|G(k)]
= ((δk − E[δk|θk])ϕk − γϕ′

kϕ
⊤
k C

−1E[(δk − E[δk|θk])ϕ|θk])
−E[(δk − E[δk|θk])ϕk|θk]− γE[ϕ′ϕ⊤]C−1E[(δk − E[δk|θk])ϕk|θk].

It is easy to see that Zk, k ≥ 0 are integrable random variables and E[Zk+1|G(k)] = 0, ∀k ≥ 0. Further,

E[||Zk+1||2|G(k)] ≤ c3(1 + ||θk||2), k ≥ 0

for some constant c3 ≥ 0, again beacuse ϕk, rk, and ϕ′
k have uniformly bounded second moments, it can be seen that for

some constant.

Consider now the following ODE associated with (11):

θ̇(t) = (I − E[γϕ′ϕ⊤]C−1)E[(δ − E[δ|θ(t)])ϕ|θ(t)]. (42)

13
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Algorithm 2 VMTDC algorithm with linear function approximation in the off-policy setting
Input: θ0, u0, ω0, γ, learning rate αt, ζt and βt, behavior policy µ and target policy π
repeat

For any episode, initialize θ0 arbitrarily, ut and ω0 to 0, γ ∈ (0, 1], and αt, ζt and βt are constant.
Output: θ∗.
for t = 0 to T − 1 do

Take At from St according to µ, and arrive at St+1

Observe sample (St,Rt+1,St+1) at time step t (with their corresponding state feature vectors)
δt = Rt+1 + γθ⊤t ϕt+1 − θ⊤t ϕt

ρt ← π(At|St)
µ(At|St)

θt+1 ← θt + αt[ρt(δt − ωt)ϕt − γϕt+1(ϕ
⊤
t ut)]

ut+1 ← ut + ζt[ρt(δt − ωt)− ϕ⊤
t ut]ϕt

ωt+1 ← ωt + βtρt(δt − ωt)
St = St+1

end for
until terminal episode

Let
h⃗(θ(t)) = (I − E[γϕ′ϕ⊤]C−1)E[(δ − E[δ|θ(t)])ϕ|θ(t)]

= (C − E[γϕ′ϕ⊤])C−1E[(δ − E[δ|θ(t)])ϕ|θ(t)]
= (E[ϕϕ⊤]− E[γϕ′ϕ⊤])C−1E[(δ − E[δ|θ(t)])ϕ|θ(t)]
= A⊤C−1(−Aθ(t) + b),

because E[(δ − E[δ|θ(t)])ϕ|θ(t)] = −Aθ(t) + b, where A = Cov(ϕ, ϕ− γϕ′), b = Cov(r, ϕ), and C = E[ϕϕ⊤]

Therefore, θ∗ = A−1b can be seen to be the unique globally asymptotically stable equilibrium for ODE (42). Let
h⃗∞(θ) = limr→∞

h⃗(rθ)
r . Then h⃗∞(θ) = −A⊤C−1Aθ is well-defined. Consider now the ODE

θ̇(t) = −A⊤C−1Aθ(t). (43)

Because C−1 is positive definite and A has full rank (as it is nonsingular by assumption), the matrix A⊤C−1A is also
positive definite. The ODE (43) has the origin as its unique globally asymptotically stable equilibrium. Thus, the assumption
(A1) and (A2) are verified.

The proof is given above. In the fastest time scale, the parameter w converges to E[δ|uk, θk]. In the second fast time scale,
the parameter u converges to C−1E[(δ − E[δ|θk])ϕ|θk]. In the slower time scale, the parameter θ converges to A−1b.

B. Experimental details
The feature matrices corresponding to three random walks are shown below respectively:

Φtabular =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



Φinverted =


0 1

2
1
2

1
2

1
2

1
2 0 1

2
1
2

1
2

1
2

1
2 0 1

2
1
2

1
2

1
2

1
2 0 1

2
1
2

1
2

1
2

1
2 0


14



770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Submission and Formatting Instructions for ICML 2024

Φdependent =


1 0 0
1√
2

1√
2

0
1√
3

1√
3

1√
3

0 1√
2

1√
2

0 0 1


Three random walk experiments: the α values for all algorithms are in the range of {0.008, 0.015, 0.03, 0.06, 0.12, 0.25, 0.5}.
For the TDC algorithm, the range of the ratio ζ

α is { 1
512 ,

1
256 ,

1
128 ,

1
64 ,

1
32 ,

1
16 ,

1
8 ,

1
4 ,

1
2 , 1, 2}. For the VMTD algorithm, the

range of the ratio β
α is { 1

512 ,
1

256 ,
1

128 ,
1
64 ,

1
32 ,

1
16 ,

1
8 ,

1
4 ,

1
2 , 1, 2}. It can be observed from the update formula of VMTDC

that when ζ takes a very small value, the VMTDC update tends to be similar to VMTD update. Similarly, when β takes
a very small value, the VMTDC update tends to be similar to TDC update. Through experiments, it was found that
setting ζ to a small value makes VMTDC updates approach VMTD updates, resulting in better performance. There-
fore, for the VMTDC algorithm, the range of β

α ratio is { 1
512 ,

1
256 ,

1
128 ,

1
64 ,

1
32 ,

1
16 ,

1
8 ,

1
4 ,

1
2 , 1, 2}, and the range of ζ is

{0.1, 0.01, 0.001, 0.0001, 0.00001}. The learning curves in Figure 3 correspond to the optimal parameters.

The feature matrix of 7-state version of Baird’s off-policy counterexample is defined as follow:

ΦCounter =



1 2 0 0 0 0 0 0
1 0 2 0 0 0 0 0
1 0 0 2 0 0 0 0
1 0 0 0 2 0 0 0
1 0 0 0 0 2 0 0
1 0 0 0 0 0 2 0
2 0 0 0 0 0 0 1


7-state version of Baird’s off-policy counterexample: for TD algorithm, α is set to 0.1. For the
TDC algorithm, the range of α is {0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, and the range
of ζ is {0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5}. For the VMTD algo-
rithm, the range of α is {0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, and the range of β is
{0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5}. Through experiments, it was found that
setting ζ to a small value makes VMTDC updates approach VMTD updates, resulting in better performance. Therefore,
for the VMTDC algorithm, The range of values for α and β is the same as that of VMTD and the range of ζ is
{0.1, 0.01, 0.001, 0.0001, 0.00001}. The learning curves in Figure 4 correspond to the optimal parameters. For all policy
evaluation experiments, each experiment is independently run 100 times.

For the four control experiments: The learning rates for each algorithm in all experiments are shown in Table 3. For all
control experiments, each experiment is independently run 50 times.

Table 3. Learning rates (lr) of four control experiments.

algorithms(lr)
envs

Maze Cliff walking Mountain Car Acrobot

Sarsa(α) 0.1 0.1 0.1 0.1
GQ(0)(α, ζ) 0.1, 0.003 0.1, 0.004 0.1, 0.01 0.1, 0.01

VMSarsa(α, β) 0.1, 0.001 0.1, 1e-4 0.1, 1e-4 0.1, 1e-4
VMGQ(0)(α, ζ, β) 0.1, 0.001, 0.001 0.1, 0.005, 1e-4 0.1, 5e-4, 1e-4 0.1, 5e-4, 1e-4
AC(lractor, lrcritic) 0.01, 0.1 0.01, 0.01 0.01, 0.05 0.01, 0.05

Q-learning(α) 0.1 0.1 0.1 0.1
VMQ(α, β) 0.1, 0.001 0.1, 1e-4 0.1, 1e-4 0.1, 1e-4
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