Commit 5c6485a5 by Lenovo

昕闻画出了两个2048游戏图

parent bba94c91
......@@ -77,12 +77,28 @@ For all possible board,
For any transition $\langle B_1, a, B_1', B_2\rangle$ in the 2048 game,
we have
$sum(B_1)=sum(B_1')$ regardless of whether at least two tiles merge.
\highlight{需要昕闻画2048的状态迁移图,同一个状态包括两种后续情况,
一种是发生合并,一种是没发生合并的}
Due to a new generated 2-tile or 4-tile in board $B_2$,
$sum(B_2)>sum(B_1')$, that is $sum(B_2)>sum(B_1)$.
Figure \ref{2048merge1} and Figure \ref{2048merge2} show transition
examples with and without a merge.
\begin{figure}[ht]
\begin{center}
\include{pic/2048merge1}
\caption{2048 transition example with a merge, where $sum(B_1)=sum(B_1')=46$,
$sum(B_2)=48>sum(B_1')$.}
\label{2048merge1}
\end{center}
\end{figure}
\begin{figure}[ht]
\begin{center}
\include{pic/2048merge2}
\caption{2048 transition example without a merge, where $sum(B_1)=sum(B_1')=62$,
$sum(B_2)=64>sum(B_1')$.}
\label{2048merge2}
\end{center}
\end{figure}
Based on (\ref{size}) and (\ref{utility}),
we have $u(B_2)>u(B_1)$.
......
\begin{tikzpicture}[scale=0.75,transform shape]
\begin{tikzpicture}[scale=0.5,transform shape]
% Draw the grid
\foreach \i in {0,...,3} {
\foreach \j in {0,...,3} {
......@@ -43,7 +43,7 @@
\draw[thick, black,->] (2,4) -- (2,5) -- (8,5) -- (8,4) ;
\draw[thick, black,->] (8,0) -- (8,-1) -- (14,-1) -- (14,0) ;
\node at (5,4.5) {$r=32$};
\node at (5,4.5) {$a=$\textit{right}, $r=32$};
\node at (11.5,-0.5) {random tile};
\node at (-0.5,2) {$B_1=$};
......
\begin{tikzpicture}[scale=0.75,transform shape]
\begin{tikzpicture}[scale=0.5,transform shape]
% Draw the grid
\foreach \i in {0,...,3} {
\foreach \j in {0,...,3} {
......@@ -43,7 +43,7 @@
\draw[thick, black,->] (2,4) -- (2,5) -- (8,5) -- (8,4) ;
\draw[thick, black,->] (8,0) -- (8,-1) -- (14,-1) -- (14,0) ;
\node at (5,4.5) {$r=0$};
\node at (5,4.5) {$a=$\textit{right}, $r=0$};
\node at (11.5,-0.5) {random tile};
\node at (-0.5,2) {$B_1=$};
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment