\section{Ergodicity and nonergodicity of a Markov chain} \begin{assumption} \label{assumption1} In the sequel $\{X_n\}$ is a Markov chain with state space $S=\{0,1,2,\ldots\}$, $\{X_n\}$ is aperiodic and irreducible, and stationary transition probabilities $\forall i,j\in S$, $P_{ij}\geq 0$. \end{assumption} \begin{theorem}(A sufficient condition for ergodicity \cite{pakes1969some,kaplan1979sufficient}) Assume Assumption \ref{assumption1}, and there exist constants $N> 0$, $B> 0$, such that \begin{equation} \forall i\geq 0, \sum_{j\in S}(j-i)P_{ij}<\infty, \end{equation} \begin{equation} \forall i\geq N, \sum_{j\in S}(j-i)P_{ij}<-B, \end{equation} $\{X_n\}$ is ergodic. \end{theorem} 请昕闻基于第一个定理完成 sutton 1998年书上 random walk 例子(书中图6.5)的遍历性证明。 \begin{theorem}(A sufficient condition for nonergodicity \cite{kaplan1979sufficient}) Assume Assumption \ref{assumption1}, if for some integer $N\geq 0$ and constants $B\geq 0$, $c\in[0,1]$ the following two conditions hold, then $\{X_n\}$ is not ergodic: \begin{equation} \forall i\geq N, \sum_{j\in S} (j-i)P_{ij}>0, \end{equation} \begin{equation} \forall i\geq N, \forall z\in[c,1], z^i-\sum_{j\in S}P_{ij}z^j\geq -B(1-z). \end{equation} \end{theorem} 请昕闻基于第二个定理完成 sutton 1998年书上 cliff-walking task 例子(书中图6.13)的非遍历性证明。 以及圣彼得堡悖论的非遍历性证明。 \textcolor{red}{注意:证明过程应该是把Markov Chain写成N个状态(状态到底是第几个也需要明确定义),状态之间的转移概率是 一个矩阵,需要把矩阵元素明确定义出来,然后基于两个定理,明确推导出两个公式是否满足}