\section{Non-ergodicity} \cite{kaplan1979sufficient} We assume that the state-process is ergodic — i.e. all states are reachable under any policy from the current state after sufficiently many steps. \cite{majeed2018q} % ABCDE的随机游走的状态矩阵 \[ P = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0\\ 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0\\ 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2}\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \] %可重启的随机游走 \[ P = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0\\ 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0\\ 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2}\\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} \] % 计算平稳分布 \[ \begin{cases} \pi_1 = \pi_3 \\ \frac{1}{2}\pi_1 + \frac{1}{2}\pi_3 = \pi_2 \\ \frac{1}{2}\pi_2 + \frac{1}{2}\pi_4 = \pi_3 \\ \frac{1}{2}\pi_3 + \frac{1}{2}\pi_5 = \pi_4 \\ \pi_3 = \pi_5 \\ \pi_1 + \pi_2 + \pi_3 + \pi_4 + \pi_5 = 1 \end{cases} \] %随机游走pic \begin{tikzpicture} \node[draw, rectangle, fill=gray!50] (DEAD) at (-2,0) ; \node[draw, rectangle, fill=gray!50] (DEAD2) at (10,0) ; \node[draw, circle] (A) at (0,0) {A}; \node[draw, circle] (B) at (2,0) {B}; \node[draw, circle] (C) at (4,0) {C}; \node[draw, circle] (D) at (6,0) {D}; \node[draw, circle] (E) at (8,0) {E}; \draw[->] (A) -- (DEAD); \draw[->] (B) -- (A); \draw[->] (B) to [bend left=30] (C); \draw[->] (C) to [bend left=30] (B); \draw[->] (C) to [bend left=30] (D); \draw[->] (D) to [bend left=30] (C); \draw[->] (D) -- (E); \draw[->] (E) -- (DEAD2); \draw[->] ([yshift=4ex]C.north) -- ([yshift=4.5ex]C.south); \end{tikzpicture} 设两个上三角矩阵为( A ) 和 ( B ),它们的形式分别为: % 两个上三角矩阵乘积求和为上三角矩阵 A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}, \quad B = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ 0 & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & b_{nn} \end{pmatrix} [ c_{ij}=\sum_{k=1}^{n} a_{ik}b_{kj} ] 当 ( i>j ) 时,有 ( c_{ij}=0 ),因为在此情况下,( a_{ik}=0 ) 或 ( b_{kj}=0 ),乘积中至少有一项为 0。 所以 ( C ) 也是一个上三角矩阵。 因此,证明了两个上三角矩阵的乘积还是一个上三角矩阵。 % N矩阵 $N=1+Q^1+Q^2……$ % “重启”随机游走 pic \begin{tikzpicture} \node[draw, circle] (A) at (0,0) {A}; \node[draw, circle] (B) at (2,0) {B}; \node[draw, circle] (C) at (4,0) {C}; \node[draw, circle] (D) at (6,0) {D}; \node[draw, circle] (E) at (8,0) {E}; \draw[->] (A.north) to [bend left=30] (C.north) \draw[->] (B) -- (A); \draw[->] (B) to [bend left=30] (C); \draw[->] (C) to [bend left=30] (B); \draw[->] (C) to [bend left=30] (D); \draw[->] (D) to [bend left=30] (C); \draw[->] (D) -- (E); \draw[->] (E.south) to [bend left=30] (C.south) \end{tikzpicture}