Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
2
20240414IEEETG
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
XingguoChen
20240414IEEETG
Commits
abfd66ae
Commit
abfd66ae
authored
May 26, 2024
by
Lenovo
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
架构已经搭好,需要李昕闻补充
parent
76a6eacc
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
106 additions
and
9 deletions
+106
-9
document.tex
+1
-0
main/2048isNonergodic.tex
+30
-0
main/background.tex
+8
-7
main/nonergodic.tex
+67
-2
No files found.
document.tex
View file @
abfd66ae
...
@@ -75,6 +75,7 @@ wangwenhao11@nudt.edu.cn).
...
@@ -75,6 +75,7 @@ wangwenhao11@nudt.edu.cn).
\input
{
main/introduction
}
\input
{
main/introduction
}
\input
{
main/background
}
\input
{
main/background
}
\input
{
main/nonergodic
}
\input
{
main/nonergodic
}
\input
{
main/2048isNonergodic
}
%\input{main/nonergodicity}
%\input{main/nonergodicity}
%\input{main/paradox}
%\input{main/paradox}
...
...
main/2048isNonergodic.tex
0 → 100644
View file @
abfd66ae
\section
{
Non-ergodicity of 2048
}
\begin{theorem}
2048 game is non-ergodic between non-absorbing states.
\end{theorem}
\begin{IEEEproof}
\end{IEEEproof}
main/background.tex
View file @
abfd66ae
...
@@ -54,9 +54,9 @@ reaching the leftmost or rightmost node where it terminates.
...
@@ -54,9 +54,9 @@ reaching the leftmost or rightmost node where it terminates.
The terminal states are usually called absorbing states.
The terminal states are usually called absorbing states.
The transition probobility matrix
The transition probobility matrix
of random walk with absorbing states
of random walk with absorbing states
$
P
_{
\text
{
ab
sorbing
}}$
is defined as follows:
$
P
_{
\text
{
ab
}}$
is defined as follows:
\[
\[
P
_{
\text
{
ab
sorbing
}}
\dot
{
=
}
\begin
{
array
}{
c|ccccccc
}
P
_{
\text
{
ab
}}
\dot
{
=
}
\begin
{
array
}{
c|ccccccc
}
&
\text
{
T
}
&
\text
{
A
}
&
\text
{
B
}
&
\text
{
C
}
&
\text
{
D
}
&
\text
{
E
}
\\\hline
&
\text
{
T
}
&
\text
{
A
}
&
\text
{
B
}
&
\text
{
C
}
&
\text
{
D
}
&
\text
{
E
}
\\\hline
\text
{
T
}
&
1
&
0
&
0
&
0
&
0
&
0
\\
\text
{
T
}
&
1
&
0
&
0
&
0
&
0
&
0
\\
\text
{
A
}
&
\frac
{
1
}{
2
}
&
0
&
\frac
{
1
}{
2
}
&
0
&
0
&
0
\\
\text
{
A
}
&
\frac
{
1
}{
2
}
&
0
&
\frac
{
1
}{
2
}
&
0
&
0
&
0
\\
...
@@ -122,6 +122,7 @@ where $Q$ is the matrix of transition probabilities between
...
@@ -122,6 +122,7 @@ where $Q$ is the matrix of transition probabilities between
is
is
\begin{equation}
\begin{equation}
N
\dot
{
=
}
\sum
_{
i=0
}^{
\infty
}
Q
^
i=(I
_{
n-1
}
-Q)
^{
-1
}
,
N
\dot
{
=
}
\sum
_{
i=0
}^{
\infty
}
Q
^
i=(I
_{
n-1
}
-Q)
^{
-1
}
,
\label
{
definitionN
}
\end{equation}
\end{equation}
where
$
I
_{
n
-
1
}$
is the
$
(
n
-
1
)
\times
(
n
-
1
)
$
identity matrix.
where
$
I
_{
n
-
1
}$
is the
$
(
n
-
1
)
\times
(
n
-
1
)
$
identity matrix.
It is now easy to define whether the non-absorbing states
It is now easy to define whether the non-absorbing states
...
@@ -139,15 +140,15 @@ Assume that $N$ exists for any policy $\pi$
...
@@ -139,15 +140,15 @@ Assume that $N$ exists for any policy $\pi$
For random walk with absorbing states,
For random walk with absorbing states,
\[
\[
P
_{
\text
{
ab
sorbing
}}
=
P
_{
\text
{
ab
}}
=
\begin
{
bmatrix
}
\begin
{
bmatrix
}
Q
_{
\text
{
ab
sorbing
}}
&
R
_{
\text
{
absorbing
}}
\\
Q
_{
\text
{
ab
}}
&
R
_{
\text
{
ab
}}
\\
0
&
I
_{
\text
{
ab
sorbing
}}
0
&
I
_{
\text
{
ab
}}
\end
{
bmatrix
}
,
\end
{
bmatrix
}
,
\]
\]
where
where
\[
\[
Q
_{
\text
{
ab
sorbing
}}
\dot
{
=
}
\begin
{
array
}{
c|ccccc
}
Q
_{
\text
{
ab
}}
\dot
{
=
}
\begin
{
array
}{
c|ccccc
}
&
\text
{
A
}
&
\text
{
B
}
&
\text
{
C
}
&
\text
{
D
}
&
\text
{
E
}
\\\hline
&
\text
{
A
}
&
\text
{
B
}
&
\text
{
C
}
&
\text
{
D
}
&
\text
{
E
}
\\\hline
\text
{
A
}
&
0
&
\frac
{
1
}{
2
}
&
0
&
0
&
0
\\
\text
{
A
}
&
0
&
\frac
{
1
}{
2
}
&
0
&
0
&
0
\\
\text
{
B
}
&
\frac
{
1
}{
2
}
&
0
&
\frac
{
1
}{
2
}
&
0
&
0
\\
\text
{
B
}
&
\frac
{
1
}{
2
}
&
0
&
\frac
{
1
}{
2
}
&
0
&
0
\\
...
@@ -175,7 +176,7 @@ Q_{\text{absorbing}}\dot{=}\begin{array}{c|ccccc}
...
@@ -175,7 +176,7 @@ Q_{\text{absorbing}}\dot{=}\begin{array}{c|ccccc}
Then,
Then,
\[
\[
N
_{
\text
{
ab
sorbing
}}
=(
I
_
5
-
Q
_{
\text
{
absorbing
}}
)
^{
-
1
}
=
\begin
{
array
}{
c|ccccc
}
N
_{
\text
{
ab
}}
=(
I
_
5
-
Q
_{
\text
{
ab
}}
)
^{
-
1
}
=
\begin
{
array
}{
c|ccccc
}
&
\text
{
A
}
&
\text
{
B
}
&
\text
{
C
}
&
\text
{
D
}
&
\text
{
E
}
\\\hline
&
\text
{
A
}
&
\text
{
B
}
&
\text
{
C
}
&
\text
{
D
}
&
\text
{
E
}
\\\hline
\text
{
A
}
&
\frac
{
5
}{
3
}
&
\frac
{
4
}{
3
}
&
1
&
\frac
{
2
}{
3
}
&
\frac
{
1
}{
3
}
\\
\text
{
A
}
&
\frac
{
5
}{
3
}
&
\frac
{
4
}{
3
}
&
1
&
\frac
{
2
}{
3
}
&
\frac
{
1
}{
3
}
\\
\text
{
B
}
&
\frac
{
4
}{
3
}
&
\frac
{
8
}{
3
}
&
2
&
\frac
{
4
}{
3
}
&
\frac
{
2
}{
3
}
\\
\text
{
B
}
&
\frac
{
4
}{
3
}
&
\frac
{
8
}{
3
}
&
2
&
\frac
{
4
}{
3
}
&
\frac
{
2
}{
3
}
\\
...
...
main/nonergodic.tex
View file @
abfd66ae
...
@@ -62,7 +62,7 @@ Figure \ref{TruncatedPetersburg} is a truncated version
...
@@ -62,7 +62,7 @@ Figure \ref{TruncatedPetersburg} is a truncated version
of the St. Petersburg paradox. The transition probabilities between
of the St. Petersburg paradox. The transition probabilities between
non-absorbing states are as follows:
non-absorbing states are as follows:
\[
\[
Q
_{
\text
{
truncated
}}
\dot
{
=
}
\begin
{
array
}{
c|ccccc
}
Q
_{
\text
{
st
}}
\dot
{
=
}
\begin
{
array
}{
c|ccccc
}
&
\text
{
S
}_
1
&
\text
{
S
}_
2
&
\text
{
S
}_
3
&
\text
{
S
}_
4
&
\text
{
S
}_
5
\\\hline
&
\text
{
S
}_
1
&
\text
{
S
}_
2
&
\text
{
S
}_
3
&
\text
{
S
}_
4
&
\text
{
S
}_
5
\\\hline
\text
{
S
}_
1
&
0
&
\frac
{
1
}{
2
}
&
0
&
0
&
0
\\
\text
{
S
}_
1
&
0
&
\frac
{
1
}{
2
}
&
0
&
0
&
0
\\
\text
{
S
}_
2
&
0
&
0
&
\frac
{
1
}{
2
}
&
0
&
0
\\
\text
{
S
}_
2
&
0
&
0
&
\frac
{
1
}{
2
}
&
0
&
0
\\
...
@@ -73,7 +73,7 @@ Q_{\text{truncated}}\dot{=}\begin{array}{c|ccccc}
...
@@ -73,7 +73,7 @@ Q_{\text{truncated}}\dot{=}\begin{array}{c|ccccc}
\]
\]
Then,
Then,
\[
\[
N
_{
\text
{
truncated
}}
=(
I
_
5
-
Q
_{
\text
{
truncated
}}
)
^{
-
1
}
=
\begin
{
array
}{
c|ccccc
}
N
_{
\text
{
st
}}
=(
I
_
5
-
Q
_{
\text
{
st
}}
)
^{
-
1
}
=
\begin
{
array
}{
c|ccccc
}
&
\text
{
S
}_
1
&
\text
{
S
}_
2
&
\text
{
S
}_
3
&
\text
{
S
}_
4
&
\text
{
S
}_
5
\\\hline
&
\text
{
S
}_
1
&
\text
{
S
}_
2
&
\text
{
S
}_
3
&
\text
{
S
}_
4
&
\text
{
S
}_
5
\\\hline
\text
{
S
}_
1
&
1
&
\frac
{
1
}{
2
}
&
\frac
{
1
}{
4
}
&
\frac
{
1
}{
8
}
&
\frac
{
1
}{
16
}
\\
\text
{
S
}_
1
&
1
&
\frac
{
1
}{
2
}
&
\frac
{
1
}{
4
}
&
\frac
{
1
}{
8
}
&
\frac
{
1
}{
16
}
\\
\text
{
S
}_
2
&
0
&
1
&
\frac
{
1
}{
2
}
&
\frac
{
1
}{
4
}
&
\frac
{
1
}{
8
}
\\
\text
{
S
}_
2
&
0
&
1
&
\frac
{
1
}{
2
}
&
\frac
{
1
}{
4
}
&
\frac
{
1
}{
8
}
\\
...
@@ -86,6 +86,71 @@ Bases on Definition \ref{definition3},
...
@@ -86,6 +86,71 @@ Bases on Definition \ref{definition3},
the truncated St. Petersburg paradox
the truncated St. Petersburg paradox
is non-ergodic between non-absorbing states.
is non-ergodic between non-absorbing states.
\subsection
{
A sufficient condition for non-ergodicity between non-absorbing states
}
Based on the truncated St. Petersburg paradox,
it is easy to provide a sufficient condition for non-ergodicity between non-absorbing states.
\begin{theorem}
[A sufficient condition for non-ergodicity between non-absorbing states]
Given a Markov chain with absorbing states,
suppose the size of the non-absorbing states
$
|S
\setminus\{\text
{
T
}
\}
|
\geq
2
$
.
If the transition probabilities
$
Q
$
between non-absorbing states satifies,
$
\forall
i,j
\in
S
\setminus\{\text
{
T
}
\}
$
,
\begin{equation}
Q
_{
i,j
}
=
\begin{cases}
0,
&
\text
{
if
}
i
\leq
j;
\\
\geq
0,
&
\text
{
otherwise.
}
\end{cases}
\label
{
condition
}
\end{equation}
Then, the Markov chain is non-ergodic between non-absorbing states.
\end{theorem}
\begin{IEEEproof}
Based on the assumption, the
$
Q
$
matrix is an upper triangular matrix.
The product of two upper triangular matrices is still an upper triangular matrix.
Furthermore, the sum of two upper triangular matrices
is still an upper triangular matrix.
Based on Definition
\ref
{
definitionN
}
,
the
$
N
$
matrix is product and sum of upper triangular matrices.
Then, the
$
N
$
matrix is an upper triangular matrix.
The claim now follows based on Definition
\ref
{
definition3
}
.
\end{IEEEproof}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment